Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7716
標題: 利用後置濾波器重建線性單輸出單輸入取樣資料系統之順滑面
A Post-filtering Approach to Reconstruction of the Sliding Surface for a Single-Input-Single-Output Sampled-Data System
作者: 揭志文
CHIHE, CHIH-WEN
關鍵字: Sliding Surface;順滑面;Post-filtering;後置濾波器
出版社: 電機工程學系所
引用: [1] V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems. Moscow: MIR, 1978. [2] B. L. Walcott and S. H. Zak, “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Trans. Syst. Man & Cyber., vol. 18, no. 1, pp. 88-104, 1988. [3] J. J. Slotine, J. K. Hedric, and E. A. Misawa, “On sliding mode observers for nonlinear systems,” J. Dyn. Syst. Meas. Contr., vol. 209, pp. 245-252, 1987. [4] S. H. Zak and S. Hui, “Output feedback variable structure controllers and state estimators for uncertain/nonlinear dynamic systems,” in IEE Proceedings-D, 1993, vol. 140, no. 1, pp.41-50. [5] İ. Haskara, Ü. Özgüner, and V. I. Utkin, “On variable structure observers”, IEEE workshop on variable structure systems, 1996. [6] R. El-Khazali and R.A. DeCarlo, “Output feedback variable structure control design,” Automatica, vol. 31, pp. 805-816, 1995. [7] B. S. Heck, S. V. Yallapragada, and M. K. H. Fan, “Numerical methods to design the reaching phase of output feedback variable structure control,” Automatica, vol. 31, pp. 275-279, 1995. [8] B. S. Heck and A. A. Ferri, “Application of output feedback for variable structure systems,” AIAA J. Guid. Contr. Dyn., vol. 12, no.10, pp. 932-935, 1989. [9] B. M. Diong and J. V. Medanic, “Dynamic output feedback variable structure control for system stabilization”, Int. J. Contr., vol. 56, pp. 607-630, 1992. [10] S. K. Bag, S. K. Spurgeon, and C. Edwards, “Output feedback sliding mode design for linear uncertain systems,” in Proc. of IEE, Part D, vol. 144, pp. 209-216, 1997. [11] S. K. Bag, S. K. Spurgeon, and C. Edwards, “Output feedback variable structure control design using uncertain systems,” in Proc. Amer. Contr. Conf., pp. 954-958, San Francisco, CA, 1993. [12] Q. P. Ha, H. Trinh, H. T. Nguyen, and H. D. Tuan, “Dynamic output feedback sliding-mode control using pole placement and linear functional observers”, IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 1030-1037, Oct. 2003. [13] K. D. Young and S. V. Drakunov, “Sliding mode control with chattering reduction,’ in Proc. Amer. Contr. Conf., pp. 1291-1292, Chicago, IL, Jun. 1992. [14] K. J. Åström, P. Hagander, and J. Sternby, “Zeros of sampled systems,” Automatica, vol. 20, no. 1, pp. 31-38, 1983. [15] H. Sira-Ramirez, “Nonlinear variable systems in sliding mode: the general case,” IEEE Trans. Automat. Contr., vol. 11, no. 11, pp. 1186-1188, 1989. [16] Melvin J. Maron, Numerical Analysis: a Practical Approach, Macmillan Publishing Co., Inc. New York, 1982. [17] L. Fridman, “Chattering analysis in sliding mode systems with inertial sensors”, Int. J. Contr., vol. 76, no. 9/10, pp.906-912, 2003. [18] P. H. Meckl and R. Kinceler, “Robust motion control of flexible systems using feedforward forcing functions,” IEEE Tans. Contr. Syst. Tech., vol. 2, no. 3, pp. 245-254, 1994. [19]陳永平可變結構控制全華出版社2002
摘要: 
本文的基本概念是利用系統的輸出來建構順滑面(sliding surface)
Ʃ(x)=0,因系統狀態不容易獲得,而系統輸出是可量測的,因此我們將針對一個線性非時變(linear time invariant, LTI)單一輸入單一輸出(single-input-single-output, SISO)系統,利用其順滑變數Ʃ(x)與輸出變數y=x 之間的映射(mapping)關係來重建順滑面,而不再需要系統狀態,此映射關係相當於一動態補償器,稱之為後置濾波器(poster-filter),我們亦將利用零階保持(zero order hold, ZOH)的方式來離散化此一後置濾波器,用以實現離散時間可變結構控制.

We consider a linear-time-invariant, single-input-single-output system described by a n-th order ordinary differential equation. In the state space, a sliding surface is set up deliberately such the perfect rejection of the matched disturbance is achieved. Assume the system output is measurable but the system state is not fully accessible. A dynamic mapping relationship between the system output and the sliding surface variable is found. It is seen that this mapping is invariant of both the system input and the matched disturbance. The basic idea of this thesis is by using a dynamic filter, called the post-filter, to realize the dynamic mapping for reconstructing sliding surface form the system output. We use zero order hold method for discrete-time implementation of the post- filter. Stability of the post-filter requires minimum phase of the system output.
URI: http://hdl.handle.net/11455/7716
其他識別: U0005-2508200715222500
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.