Please use this identifier to cite or link to this item:
標題: 以快速熱回火技術改善非晶矽薄膜太陽能電池特性之研究
Study on the Improvement of a-Si:H P-I-N Thin Film Solar Cell Characteristic by Rapid Thermal Annealing Technology
作者: 洪佳民
Hung, Chia-Min
關鍵字: Hydrogenated amorphous silicon films;快速熱回火;Rapid thermal annealing;氫化非晶矽薄膜
出版社: 電機工程學系所
引用: [1] 陳治明,非晶半導體材料與器件,科學出版社,1991 [2]Tomonori Nishimoto,Madoka Takai,Michio Kondo,and Akihisa Matsuda,”Relationship between the photo-induced degradation characteristics and film structure of a-Si:H films prepared unser various condition”,Photovoltaic Specialists Conference, p 876-879,15-22 Sept,2000 [3] T. Takagi,R. Hayashi,G. Ganguly,M. Kondo,A. Matsuda,”Gas-phase diagnosis and high-rate growth of stable a-Si:H”,Thin Solid Films,345, p75-79,1999 [4] J. Furlan,S. Amon,F. Smole,D. Sencar,”a-Si versus c-Si material and solar cells similirarities and differences”,Electrotechnical conference,p 119–122,11-13 April,1989 [5] Y.-K Yang, J.-S. Shin, R.-G. Hsieh,and J.-Y. Gan,”Film thickness reduction of thermally annealed hydrogenated amorphous silicon prepared with plasma - enhanced chemical vapor deposition”,Appl. Phys. Lett.,Vol.64,March,1994 [6] G. Talukder, J. C. L. Cornish, P. Jennings,G. T. Hefter,and B. W. Glare,”Effects of annealing on infrared and thermal-effusion spectra of sputtered a-Si:H alloys”,Journal of Applied Physics,v71,n1,p 403,1 Jan,1992 [7] D.L. Staebler,C.R. Wronski, “Optically induced conductivity changes in discharge - produced hydrogenated amorphous silicon”,Journal of Applied Physics,v51,n6,p 3262-3268, Jun,1980 [8] Huiying Hao,Shibin Zhang,Yanyue Xu,Xiangbo Zeng,Hongwei Diao,Guanglin Kong,”Improved diphasic nc-Si/a-Si:H I-layer materials using PECVD”,2004 7th International Conference on Solid-State and Integrated Circuits Technology Proceedings, p 2025-2028,2004 [9] Y. Seto,T. Yamamoto,M. Kondo,A.Matsuda,”Improvement of microcrystalline silicon solar cell by insertion of buffer layer to tco/p interface”,3rd World Conference on Photovoltaic Energy Conversion,p 1820-1822,2003 [10] Wenhui Du,Xianbo Liao,Xiesen Yang,Xianbi Xiang,Xunming Deng,”Fine-grained nanocrystalline silicon p-layer for high open circuit voltage a-Si:H solar cells”,31st IEEE Photovoltaic Specialists Conference,p 1401-1403,2005 [11] Ing-Shin Chen,Taraneh Jamali-beh,Yeeheng Lee,Ching-Yi Li,and C. R. Wronski,”Mobility and optical gaps in different a-Si:H based materials and their impact on cell performance”,1st World Conf. on Photovoltaic Energy Conversion, p 468-471,1994 [12] A. Lambertz,F. Finger,R. Carius,Silicon solar cells and material near the transition from microcrystalline to amorphous growth,3rd World Conference on Photovoltaic Energy Conversion,p 1804-1807,2003 [13] Tobias Roschek,Tobias Repmann,Joachim Muller,Bernd Rech,Heribert Wangner,High rate deposition of microcrystalline silicon solar cells using 13.56 MHz PECVD,Materials Research Society Symposium – Proceedings, v 715, p 635-640,2002 [14] Guo bing zong,”Improve the photodegradation effect of a-Si:H solar cells by pulsed rapid thermal annealing”,p 2-5,nchuee,1996

量測結果顯示經由快速熱回火技術,可以有效漸進地改變矽氫鍵結的結構,並將不穩定的矽氫鍵結及過多的氫原子移除,其中以784 cm-1的紅外吸收光譜訊號,明顯地容易受加熱而降低。光電特性分析方面,在回火溫度350℃ ~ 450℃短暫熱回火條件下,由於薄膜內之矽氫鍵結重組,而使得試片的轉換效率皆可獲得明顯的改善。



In this study, hydrogenated amorphous silicon films were fabricated by PECVD at 200℃ substrate temperature, and then these films were rapidly annealed with several different temperatures and different times. Then, we investigate the optical band gap、the variation of crystal and measure the influence of Si-H bonds.

Releasing of hydrogen atoms and modifying the Si-H bonds could be gradually altered by rapid thermal annealing technology. The intensities of IR absorption peaks at 784 cm-1 are easily reduced after annealing. For 350 ℃ ~ 450 ℃ rapid thermal annealing, the reconstruction of Si-H bonding configurations improves the solar cell efficiency.

Learnt by the last experimental result, although rapid thermal annealing can improve efficiency. But the same time different temperature rapid thermal annealing, efficiency can’t rise as temperature rises straight, and the same temperature different time rapid thermal annealing, efficiency and time can’t in direct ratio to rise, but there is a best treatment condition. We found the temperature 375℃ is the best condition by the experiment, and probe into the influence on the component of annealing time with this temperature condition, in 10 seconds annealing, found the best conversion efficiency.

After 48hours illuminated, the initial solar cell conversion efficiency that drop 60.48%, annealing 2 seconds solar cell efficiency drop 20.32%, annealing 10 seconds solar cell efficiency drop 19.17%, annealing 30 seconds solar cell efficiency drops 19.89%. We can know, drop in 10 seconds is smaller than drop in 2 seconds and 30 seconds. And illuminated 48 hours later, the conversion efficiency still has 1.77%.
其他識別: U0005-2708200722294000
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.