Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7762
DC FieldValueLanguage
dc.contributor汪芳興zh_TW
dc.contributor康宗貴zh_TW
dc.contributor.advisor劉漢文zh_TW
dc.contributor.author洪佳民zh_TW
dc.contributor.authorHung, Chia-Minen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:40:29Z-
dc.date.available2014-06-06T06:40:29Z-
dc.identifierU0005-2708200722294000zh_TW
dc.identifier.citation[1] 陳治明,非晶半導體材料與器件,科學出版社,1991 [2]Tomonori Nishimoto,Madoka Takai,Michio Kondo,and Akihisa Matsuda,”Relationship between the photo-induced degradation characteristics and film structure of a-Si:H films prepared unser various condition”,Photovoltaic Specialists Conference, p 876-879,15-22 Sept,2000 [3] T. Takagi,R. Hayashi,G. Ganguly,M. Kondo,A. Matsuda,”Gas-phase diagnosis and high-rate growth of stable a-Si:H”,Thin Solid Films,345, p75-79,1999 [4] J. Furlan,S. Amon,F. Smole,D. Sencar,”a-Si versus c-Si material and solar cells similirarities and differences”,Electrotechnical conference,p 119–122,11-13 April,1989 [5] Y.-K Yang, J.-S. Shin, R.-G. Hsieh,and J.-Y. Gan,”Film thickness reduction of thermally annealed hydrogenated amorphous silicon prepared with plasma - enhanced chemical vapor deposition”,Appl. Phys. Lett.,Vol.64,March,1994 [6] G. Talukder, J. C. L. Cornish, P. Jennings,G. T. Hefter,and B. W. Glare,”Effects of annealing on infrared and thermal-effusion spectra of sputtered a-Si:H alloys”,Journal of Applied Physics,v71,n1,p 403,1 Jan,1992 [7] D.L. Staebler,C.R. Wronski, “Optically induced conductivity changes in discharge - produced hydrogenated amorphous silicon”,Journal of Applied Physics,v51,n6,p 3262-3268, Jun,1980 [8] Huiying Hao,Shibin Zhang,Yanyue Xu,Xiangbo Zeng,Hongwei Diao,Guanglin Kong,”Improved diphasic nc-Si/a-Si:H I-layer materials using PECVD”,2004 7th International Conference on Solid-State and Integrated Circuits Technology Proceedings, p 2025-2028,2004 [9] Y. Seto,T. Yamamoto,M. Kondo,A.Matsuda,”Improvement of microcrystalline silicon solar cell by insertion of buffer layer to tco/p interface”,3rd World Conference on Photovoltaic Energy Conversion,p 1820-1822,2003 [10] Wenhui Du,Xianbo Liao,Xiesen Yang,Xianbi Xiang,Xunming Deng,”Fine-grained nanocrystalline silicon p-layer for high open circuit voltage a-Si:H solar cells”,31st IEEE Photovoltaic Specialists Conference,p 1401-1403,2005 [11] Ing-Shin Chen,Taraneh Jamali-beh,Yeeheng Lee,Ching-Yi Li,and C. R. Wronski,”Mobility and optical gaps in different a-Si:H based materials and their impact on cell performance”,1st World Conf. on Photovoltaic Energy Conversion, p 468-471,1994 [12] A. Lambertz,F. Finger,R. Carius,Silicon solar cells and material near the transition from microcrystalline to amorphous growth,3rd World Conference on Photovoltaic Energy Conversion,p 1804-1807,2003 [13] Tobias Roschek,Tobias Repmann,Joachim Muller,Bernd Rech,Heribert Wangner,High rate deposition of microcrystalline silicon solar cells using 13.56 MHz PECVD,Materials Research Society Symposium – Proceedings, v 715, p 635-640,2002 [14] Guo bing zong,”Improve the photodegradation effect of a-Si:H solar cells by pulsed rapid thermal annealing”,p 2-5,nchuee,1996zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7762-
dc.description.abstract本論文是在200℃溫度條件下,利用電漿輔助化學氣相沉積方式製作氫化非晶矽薄膜,並以不同時間和不同溫度對薄膜進行快速熱回火處理,以研究薄膜在短暫受熱後光能帶、結晶的變化,並測量其對矽氫鍵結之影響。並且利用薄膜的量測結果製作非晶矽薄膜太陽能電池。 量測結果顯示經由快速熱回火技術,可以有效漸進地改變矽氫鍵結的結構,並將不穩定的矽氫鍵結及過多的氫原子移除,其中以784 cm-1的紅外吸收光譜訊號,明顯地容易受加熱而降低。光電特性分析方面,在回火溫度350℃ ~ 450℃短暫熱回火條件下,由於薄膜內之矽氫鍵結重組,而使得試片的轉換效率皆可獲得明顯的改善。 由實驗結果得知,雖然快速熱回火技術能改善效率。但是相同時間不同溫度回火時,效率並不會一直隨著溫度上升而上升,而相同溫度不同時間的回火時,效率也不是和回火時間成正比上升,而是都會有一個最佳化的處理條件。由實驗發現375℃的溫度為最佳的條件,並用此溫度條件探討回火時間對於元件的影響,在回火10秒鐘時,得到了最佳的轉換效率。 在光照衰退方面,照光48小時之後。未回火處理的元件轉換效率下降60.48%,回火2秒鐘轉換效率下降20.32%,回火10秒鐘轉換效率下降19.17%,回火30秒鐘轉換效率下降19.89%,由上可知,375℃回火10秒後的轉換效率下降幅度略比回火2秒及回火30秒好一些,而且照光48小時後,轉換效率仍然有1.77%。zh_TW
dc.description.abstractIn this study, hydrogenated amorphous silicon films were fabricated by PECVD at 200℃ substrate temperature, and then these films were rapidly annealed with several different temperatures and different times. Then, we investigate the optical band gap、the variation of crystal and measure the influence of Si-H bonds. Releasing of hydrogen atoms and modifying the Si-H bonds could be gradually altered by rapid thermal annealing technology. The intensities of IR absorption peaks at 784 cm-1 are easily reduced after annealing. For 350 ℃ ~ 450 ℃ rapid thermal annealing, the reconstruction of Si-H bonding configurations improves the solar cell efficiency. Learnt by the last experimental result, although rapid thermal annealing can improve efficiency. But the same time different temperature rapid thermal annealing, efficiency can’t rise as temperature rises straight, and the same temperature different time rapid thermal annealing, efficiency and time can’t in direct ratio to rise, but there is a best treatment condition. We found the temperature 375℃ is the best condition by the experiment, and probe into the influence on the component of annealing time with this temperature condition, in 10 seconds annealing, found the best conversion efficiency. After 48hours illuminated, the initial solar cell conversion efficiency that drop 60.48%, annealing 2 seconds solar cell efficiency drop 20.32%, annealing 10 seconds solar cell efficiency drop 19.17%, annealing 30 seconds solar cell efficiency drops 19.89%. We can know, drop in 10 seconds is smaller than drop in 2 seconds and 30 seconds. And illuminated 48 hours later, the conversion efficiency still has 1.77%.zh_TW
dc.description.tableofcontents致謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 簡介 1 1.1 前言 1 1.2 文獻探討 2 1.2.1 傅立葉轉換紅外光譜對氫化非晶矽薄膜矽氫鍵結分析 2 1.2.2 回火對非晶矽薄膜的影響 4 1.2.3 照光衰退對非晶矽薄膜的影響 4 1.2.4 研究動機 5 第二章 氫化非晶矽薄膜及PIN結構太陽能電池之製作與量測 6 2.1 氫化非晶矽薄膜(I層薄膜)之製作 6 2.2 試片清洗與實驗流程 6 2.2.1 基板試片清洗 6 2.2.2 沉積薄膜流程 7 2.3氫化非晶矽太陽能電池製作 8 2.4 RTA (Rapid Thermal Annealing) 快速熱回火 8 2.4.1 快速熱回火系統 8 2.4.2 回火參數設定 9 2.5 氫化非晶矽薄膜特性與元件的量測與分析方法 12 2.5.1 氫化非晶矽薄膜的矽氫鍵結及結晶分析 12 2.5.1.1傅立葉轉換紅外光光譜分析儀(FTIR)量測系統 12 2.5.1.2 3D Nanofinder拉曼量測系統 13 2.5.2 氫化非晶矽薄膜穿透度及光能帶分析 13 2.5.3 光電特性分析 14 2.5.3.1 光電特性分析原理 14 2.5.3.2 光電特性分析系統 15 第三章 實驗結果與討論 17 3.1 相同時間下,不同溫度的快速熱回火處理對非晶矽薄膜的影響 17 3.1.1 拉曼量測 17 3.1.2 UV-VIS量測 20 3.1.3 傅立葉轉換紅外光光譜分析儀(FTIR)量測 22 3.2 相同溫度下,不同時間的快速熱回火處理對非晶矽薄膜的影響 26 3.2.1 FTIR量測 26 3.3 相同時間下,不同溫度的快速熱回火處理對元件的影響 28 3.4 相同溫度下,不同時間的快速熱回火處理對元件的影響 31 3.5 快速熱回火處理對光照衰退的影響 35 第四章 結論 43 第五章 未來工作 44 參考文獻 45zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200722294000en_US
dc.subjectHydrogenated amorphous silicon filmsen_US
dc.subject快速熱回火zh_TW
dc.subjectRapid thermal annealingen_US
dc.subject氫化非晶矽薄膜zh_TW
dc.title以快速熱回火技術改善非晶矽薄膜太陽能電池特性之研究zh_TW
dc.titleStudy on the Improvement of a-Si:H P-I-N Thin Film Solar Cell Characteristic by Rapid Thermal Annealing Technologyen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.