Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7775
標題: 高頻量測干擾之單輸入輸出系統觀測器設計
Observer Design for SISO Systems with High Frequency Measurement Noise
作者: 邱俊彰
Chiu, Chun-Chang
關鍵字: Observer;觀察器
出版社: 電機工程學系所
引用: [1] D. G. Luenberger, “Observing the state of a linear system,” IEEE Trans. Mil. Electron.,vol. MIL-8, pp. 74-80, Apr. 1964. [2] D. G. Luenberger, “Observers for multivariable systems,” IEEE Trans. on Automat. Control,vol. 11, no. 4, pp. 190-197, Apr. 1966. [3] M. Aoki and J.R. Huddle, “Estimation of state vector of a linear stochastic system with a constrained estimator,” IEEE Trans. Control(Short papers), vol. 12, pp.432-433, Aug. 1967. [4] F. Dellon and P.E. Sarachik, “Optimal control of unstable linear plants with inaccessible states,” IEEE Trans. Control, vol. 13, pp.491-495, Oct. 1968. [5] P. Belanger, “Observation and control of linear systems with constant disturbances,” IEEE Trans. on Autom. Control, vol.15, no.6, pp.695-696, Dec. 1970. [6] M. S. Grewal, A. P. Andrews, Kalman filtering and practice using MATLAB, John Wiely, 2001. [7] C. F. Lin, W. C. Su and K. H. L, “Post-filtering output feedback variable structure control,” in Proceeding of American Control Conference 2005, pp.4655-4660. [8] G. W. Johnson, “A deterministic theory of estimation and control,” IEEE Trans. on Autom. Control, vol.14, pp.695-696, Dec. 1970. [9] J.J. Bongiorno and D.C. Youla, “On observers in multivariable control systems,” Int J. Control, vol. 8, no. 3, pp.221-243, 1968. [10] V.V.S. Sarma and B.L. Deekshatulu, “Optimal control when some of the state variables are not measurable,” Int. J. Contr., vol. 7, no. 3, pp. 251-256, 1968. [11] I.G. Sarma and C. Jayaraj, “On the use of observers in finite-time optimal regulator problems,” Int. J. Contr., vol. 11, no. 3, pp. 489-497, 1970. [12] A. V. Oppenheim, R. W. Schafer and J.R. Buck, Discrete-time signal processing, New Jersey: Prentice-Hall, 1989. [13] F. M. Callier and C. A. Desoer, Linear system theory, New York: Springer-Verlag, 1991. [14] C. T. Chen, R. W. Schafer and J.R. Buck, Linear system theory and design, New York: Oxford, 1999. [15] D. G. Luenberger, “An introduction to observers,” IEEE Trans. on Autom. Control,vol. 16, no. 6, pp. 190-197, Apr. 1971. [16] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback control of Dynamic systems, New Jersey: Prentice-Hall, 2002. [17] F. L. Lewis, Optimal control, New York: John Wiley and Sons, 1995. [18] M. M. Newman, “Optimal and sub-optimal control using an observer when some of the state variables are not measurable,” Int. J. Contr., vol. 9, pp. 281-290, 1969. [19] S. Ibaraki, S. Suryanarayanan and M. Tomizuka, “Design of Luenberger state observers using fixed-structure H∞ optimization and its application to fault detection in lane-keeping control of automated vehicles,” IEEE/ASME Transactions on Mechatronics, vol.10, no.1, pp.34-42, Feb. 2005. [20] V. V. S. Sarma and B. L. Deekshatulu, “Optimal control when some of the state variables are not measurable,” Int. J. Contr., vol. 7, no.3, pp. 251-256, 1968. [21] K. Morris, Introduction to Feedback control, Orlando Florida: Harcourt/Academic Press, 2001. [22] P. Belanger, “Observation and control of linear systems with constant disturbances,” IEEE Trans. on Autom. Control,vol. 15, no. 6, pp. 695-696, Dec. 1970. [23] D. G. Luenberger, “An introduction to observers,” IEEE Trans. on Autom. Control,vol. 16, no. 6, pp. 596-602, Apr. 1971. [24] J. J. Bongiorno and D. C. Youla, “On observers in multivariable control systems,” Int. J. Contr., vol. 8, no. 3, pp. 221-243, 1968. [25] B. Porter and M. A. Woodhead, “Performance of optimal Control systems when some of the state variables are not measurable,” Int. J. Contr., vol. 8, no. 2, pp. 191-195, 1968. [26] I. G. Sarma and C. Jayaraj, “On the use of observers in finitetime optimal regulator problems,” Int. J. Contr., vol. 11, no. 3, pp. 489-497, 1970.
摘要: 
在很多控制系統上的應用往往無法避免量測雜訊,同時它也將讓狀態估測器的估測能力降低。這篇文章提供給單輸入輸出系統一個最佳估測器去克服量測雜訊。同時藉著低通濾波器將未知的高頻雜訊除掉。再由建造最佳觀測增益矩陣來完成最佳化的動作。此擴增系統的觀測性也被列入考量。最終在以模擬結果來證明。

Measurement noises are inevitable in many applications. The measurement noises will deteriorate the performance of the state estimator. This thesis proposes a method of optimal state estimator design of a single-input single-output (SISO) linear time-invariant system about high frequency measurement noise. By introducing a low-pass filter (LPF) connected in the system output to smooth out the unknown noise with an optimal state estimator is constructed to design a proper observer gain to achieve the global minimum cost function. In the chapter 2, we propose the specific proof for augmented system. Finally, numerical simulation is provided to verify the proposed idea.
URI: http://hdl.handle.net/11455/7775
其他識別: U0005-2806200721104200
Appears in Collections:電機工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.