Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLai, Chung-Weien_US
dc.identifier.citation[1] 太陽能工程-太陽電池篇 莊嘉琛編譯 初版 全華 民86 [2] – The photovoltaics solar cells [3] National Renewable Energy Laboratory Photovoltaic Research [4] [5] Silvaco technical solutions library. [6] Silvaco TCAD Products – Process Simulation ATHENA [7] Silvaco TCAD Products – Device Simulation ATLAS [8] Brenton Burnett, “The Basic Physics and Design of III-V Multijunction Solar cells,” 2002 [9] S. M. Sze, “Semiconductor Devices: Physics and Technology,” John Wiley & Sons, Inc., p. 289. [10] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, NASA Technical Report No. R-351, 1970 [11] “Thin-film solar cells : next generation photovoltaics and its applications Yoshihiro Hamakawa(Ed.)” Hamakawa, Yoshihiro. Berlin Heidelberg: Springer-Verlag, 2003. [12] Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon Masetti, G.; Severi, M.; Solmi, S.; Electron Devices, IEEE Transactions on Volume 30, Issue 7, Jul 1983 Page(s):764 - 769 [13] “Silvaco ATLAS as a solar cell modeling tool” Michael, S.; Bates, A.D.; Green, M.S.;Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE 3-7 Jan. 2005 Page(s):719 - 721zh_TW
dc.description.abstract本論文使用元件製程模擬軟體來模擬非晶矽PIN薄膜太陽能電池的光電特性,藉由調變P型及N型矽薄膜載子濃度與I層厚度,並為了提升模擬的精確性而以實驗取得之部分薄膜參數取代模擬軟體預設參數,以期獲得元件中的光電特性趨勢以改善實驗設計。由模擬所得的電流電壓特性可得其最佳化理想PIN薄膜太陽能電池元件特性開路電壓從0.67 V至0.88 V、短路電流從11.58 mA/cm2至16.33 mA/cm2、填充因子從70 %至72 %、轉換效率從5.43 %至10.45 %。在實驗部分,我們以PECVD系統在200℃下成長非晶矽薄膜,藉著改變摻雜氣體B2H6及PH3比例來控制薄膜載子濃度。而實驗結果也符合模擬製程的元件趨勢變化,可得薄膜太陽能電池元件特性由1.83 %提升至2.37 %。實驗得到的元件特性與模擬結果有較大差異的可能原因為PECVD系統真空度不佳及某些製程條件(如沉積溫度等)未最佳化。zh_TW
dc.description.abstractThis study uses the Silvaco device simulation tools to simulate the optoelectrical characteristics of thin film PIN amorphous silicon solar cells by changing the carrier concentration of P layer and N layer and the thickness of I layer. In order to obtain an accurate simulation result we applied the experimental measurement characteristics to replace the default settings in the simulator. And try to figure out the trend of device optoelectrical parameters by the simulation results to improve the design of experiments. The optimization result of thin film amorphous silicon solar cell simulation reveals a PIN solar cell with open-circuit voltage from 0.67 V to 0.88 V, short-circuit current from 11.58 mA/cm2 to 16.33 mA/cm2, fill factor from 70 % to 72 %, and the conversion efficiency from 5.43 % to 10.45 %. And then we use the PECVD system to deposit the silicon thin film at substrate temperature of 200℃. We change the flow rate of dopant gases B2H6 and PH3 to show the different doping concentration in P layer and N layer. The experiment results have similar trends with the simulation results. The conversion efficiency of thin film solar cell increases from 1.83 % to 2.37 %. The possible reasons for the differences between the experiment results and the simulation results are low vaccum in PECVD system and unoptimized fabrication parameters such as substrate temperature.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii Contents iv Figure Captions vi Table list vii Chapter 1 Introduction 1.1 Development of solar energy 1 1.2 History of solar cell 2 1.3 Introduction of silicon-base solar cell 3 1.4 PIN solar cell 4 1.5 Simulation tools 5 1.5.1 Introduction to TCAD 5 1.5.2 ATHENA – the process simulator 6 1.5.3 ATLAS – the device simulator 7 1.6 Thesis organization 7 Chapter 2 Simulation modules and parameters 2.1 Solar radiation 8 2.2 Analysis of optoelectronic character 10 2.2.1 Fundamental solar cell parameters 10 2.2.2 Equivalent circuit of solar cells 13 2.3 Procedure of cell simulation 15 2.3.1 The design flow of cell structure 15 2.3.2 Design of simulation 16 2.4 Simulation results of cell performance 18 2.4.1 Simulation results 18 2.4.2 Optimized simulation condition 25 Chapter 3 Experiment Results 3.1 Fabrication preparation & fabrication process 26 3.1.1 Experiments 26 3.1.2 Sample cleaning 26 3.1.3 Fabrication process 28 3.2 Fabrication of hydrogenated amorphous silicon 29 3.2.1 PECVD system (Plasma Enhanced Chemical Vapor Deposition) 29 3.2.2 Material characteristic analysis of hydrogenated amorphous silicon 31 3.3 Analysis of device 34 3.3.1 n&k measurement of silicon thin film 35 3.3.2 Four point probe measurement of silicon thin film 36 3.3.3 Hall effect measurement of silicon thin film 37 3.3.4 I-V measurement of silicon thin film 40 Chapter 4 Summary 4.1 Summary 45 References 46zh_TW
dc.subjectsolar cellen_US
dc.subjectamorphous siliconen_US
dc.titleDevice Simulation of Hydrogenated Amorphous Silicon Thin-film Solar Cellsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.