Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7849
DC FieldValueLanguage
dc.contributor徐保羅zh_TW
dc.contributor翁慶昌zh_TW
dc.contributor張文中zh_TW
dc.contributor黃國興zh_TW
dc.contributor.advisor蔡清池zh_TW
dc.contributor.author王台有zh_TW
dc.contributor.authorWang, Tai-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:40:39Z-
dc.date.available2014-06-06T06:40:39Z-
dc.identifierU0005-0301200911122100zh_TW
dc.identifier.citation[1] W. E. Dixon, D. M. Dawson, E. Zergeroglu and A. Behal, Nonlinear control of wheeled mobile robots, Springer, 2001. [2] P. Soueres and J. P. Laumond, “Shortest path synthesis for a car-like robot,” IEEE Transactions on Automatic Control, vol.41,no.5, pp.672-688, 1996. [3] Y. J. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control scheme for an autonomous mobile robot,” Proceeding IEEE International Conference Robotics and Automation, pp.384-389, 1990. [4] C. Samson, “Control of chained systems applications to path following and time-varying point-stabilization of mobile robots,” IEEE Transactions on Robotics and Automation, vol. 40, no. 1, pp. 64-77, Jan. 1995. [5] Z. P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol.33, pp.1393-1399, 1997. [6] W. Oelen and J. Amerongen van, “Robust tracking control of two-degree-freedom mobile robots,” Control Engineering Practice, vol.2, pp.333-340, 1994. [7] T. Fukao, H. Nakagawa, and N. Adachi “Adaptive tracking control of a nonholonomic mobile Robot,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 609-615, October 2000. [8] A. M. Bloch and S. Drakunov, “Stabillzation of a nonholonomic system via sliding modes,” Proceeding 33rd IEEE Conference On Decision and Control, Lae Buena Vista, FL, pp.2961-2963,1994. [9] S. Bentalba, A. E. Hajjaji, and A. Rachis, “Fuzzy control of a Mobile robot: A new approach,” Proceeding 34th IEEE Conference On Decision and Control, Hartford, CT, pp.69-72, 1997. [10] R. Fierro and F. L. Lewis, “The Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, vol.9, no.4, pp.589-600, 1998. [11] D. K. Chwa, J. H. Seo, P. Kim, and J. Y. Choi, “Sliding mode tracking control of nonholonomic wheeled mobile robots,” American Control Conference, vol.5, pp.3991-3996, 2002. [12] J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automation, 15, No. 3, pp.578-587, 1999 [13] W. Wu, H. Chen, and Y. Wang, “Backstepping design for path tracking of mobile robots,” Proceeding of IEEE International Conference Robot and System, pp.1822-1827, 1999. [14] M. Aicardi, G. Casalino, A. Bicchi, A. Balestrino, “Closed loop steering of unicycle-like vehicles via Lyapunov techniques,” IEEE Robotics and Automation Magazine, pp.27-35, 1995. [15] H. Gartner and A. Astolfi, “Stability study of a fuzzy controlled mobile robot,” Proc. IEEE International Conference on Decision and Control, pp.1121-1126, 1996. [16] P. F. Muir, and C. P. Neuman, “Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot,” Proceedings of 1987 IEEE International Conference on Robotics and Automation, vol. 4, pp. 1772-1778, 1987. [17] F. G. Pin, and S. M. Killough, “A new family of omnidirectional and holonomic wheeled platforms for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 480-489, 1994. [18] A. Béktourné, and G. Campion, “Kinematic modeling of a class of omnidirectional mobile robots,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, vol. 4, pp. 3631- 3636, 1996. [19] K. Watanabe, “Control of an omnidirectional mobile robot,” Proceedings of 1998 Second International Conference on Knowledge-Based Intelligent Electronic Systems, vol. 1, pp. 51 - 60, 1998. [20] B. J. Yi, , and W. K. Kim, “The kinematic for redundantly actuated omni-directional mobile robots,” Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, pp. 2485-2492, 2000. [21] K. L. Moore, and N. S. Flann, “A six-wheeled omnidirectional autonomous mobile robot, ” IEEE Control Systems Magazine, vol. 20, no. 6, pp. 53-66, 2000. [22] M. J. Jung, H. S. Kim, S. Kim, , and J. H. Kim , “Omni-directional mobile base OK-II,” Proceeding of the 2000 IEEE International Conference on Robotics and Automation, San Franciso, CA, pp. 3449-3454, 2000. [23] T. K. Nagy, R. D. Andrea, and P. Ganguly, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” Robotics and Autonomous Systems, vol. 46, pp. 47-64, 2004. [24] R. L.Williams II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002. [25] C. C. Tsai, and T. S. Wang, “Nonlinear control of an omnidirectional mobile robot,” CD-ROM Proceeding of the 8th International Conference on Automation Technology (Automation 2005), Taichung, Taiwan, pp. 727-732, 2005. [26] Z. Yang, and E. Red, “On-line Cartesian trajectory control of mechanism along complex curves,” Robotica, vol. 15, pp. 263-274, 1997. [27] E. Red, “A dynamic optimal trajectory generator for Cartesian path following,” Robotica, vol. 18, pp. 451-458, 2000. [28] K. D. Do, Z. P. Jiang, and J. Pan, “A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots,” IEEE Transactions Robotics and Automation, vol. 20, no. 3, pp. 589-594, 2004. [29] K. D. Do, Z. P.Jiang, and J. Pan, “Simultaneous tracking and stabilization of mobile robots: an adaptive approach,” IEEE Transactions on Automatic Control, vol. 49, no.7, pp. 1147-1151, 2004. [30] D. K. Chwa, “Sliding mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, no. 4, pp. 637-644, 2004. [31] T. Y. Wang, C. C. Tsai, and J. L. Pang, “Nonlinear Regulation and Path Tracking of a Wheeled Mobile Robot in Polar Coordinates,” Journal of Chinese Institute of Engineers, vol. 28, pp. 925-933, 2005. [32] J. F. Blumrich, “Omnidirectional vehicle,” United States Patent 3,789,947, 1974. [33] B. E. Ilou, “Wheels for a course stable self-propelling vehicle movable in any desired direction on the ground or some other base,” United States Patent 3,876,255, 1975. [34] M. West, and H. Asada, “Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematic,” Journal of Mechanical Design, pp. 119-161, 1997. [35] M. Wada, and S. Mory, “Holonomic and omnidirectional vehicle with conventional tires,” Proc. of IEEE International Conference on Robotics and Automation, pp. 3671-3676,1996. [36] B. Carlisle, “An Omnidirectional Mobile Robot,” Development in Robotics, Kempston, pp.79-87, 1983. [37] P. Muir, and C. Neuman, “ Kinematic Modeling of Wheeled Mobile Robots,” Journal of Robotic Systems, Vol. 4, No. 2, pp. 281-340,1987. [38] H.Asama, M. Sato, L. Bogoni, H. Kaetsu, A. Masumoto, and I. Endo, “ Development of an Omnidirectional Mobile Robot with 3 DOF Decoupling Drive Mechanism,” Proceeding of IEEE International Conference on Robotics and Automation, pp. 1925-1930,1995. [39] K. Tahboub, and H. Asada, “Dynamic Analysis and Control of a Holonomic Vehicle with Continuously Variable Transmission,” Proceeding of IEEE International Conference on Robotics and Automation, pp. 2466-2472, 2000. [40] M. Wada, and H. Asada, “Design and Control of a Variable Footprint Mechanism for Holonomic Omnidirectional Vehicles and Its Application to Wheelchairs,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, pp. 978-989,1999. [41] T. Kalmár-Nagy, P. Ganguly, and R. D'andrea, “Real-time trajectory generation for omnidierectional vehicles,” Proceedings of the American Control Conference, Anchorage, AK, USA, pp. 286-291, 2002. [42] H. K. Khalil, Nonlinear Systems, 3rd Ed., Prentice Hall, 2002. [43]V. Kumar, T. Rahman, V. Krovi, “Assistive devices for people with motor disabilities,” Wiley Encyclopaedia of Electrical and Electronics Engineering Assistive Devices for People with Motor Disabilities, 1997. [44] Y. Hayashibara, T. Takubo, Y. Sonoda, H. Arai, K. Tanie, “Assist system for carrying a long object with a human-analysis of a human cooperative behavior in the vertical direction,” Proceeding of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.695-700, 1999. [45] H. K. Lee; T. Takubo, H. Arai, K. Tanie, “Control of mobile manipulators for power assist systems,” Proceeding of the 1999 IEEE International Conference on Systems, Man, and Cybernetics, pp.989-994, 1999. [46] H. Pearce, “The Design and Construction of an Intelligent Power Assist Jib Crane, Master Thesis.” Northwestern University, 1999. [47] S. Kawai, H. Yokoi, K. Naruse, Y. Kakazu, “A study for control of a power assist device,” Proceeding of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2283-2288, 2004. [48] K. Naruse, S. Kawai, T. Kukichi, “Three-dimensional lifting-up motion analysis for wearable power assist device of lower back support,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2959 - 2964, 2005 [49] H. Seki, T. Sugimoto, S. Tadakuma, “Novel driving control of power assisted wheelchair based on minimum jerk trajectory,” IEEJ Transactions on Electronics, Information and Systems, vol.125-C, no.7, pp.1133-1139, 2005(in Japanese). [50] Y. Wu; M. Higuchi, Y. Takeda, “Development of a power assisting system of a walking chair,” Proceeding of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3207-3212, 2004. [51] Y. Akiyama, K. Sanada, “A study on design and evaluation of a power-assisted chair,” Proceeding of the SICE Annual Conference 2005, pp.3074-3078, 2005. [52] H. Maeda, S. Fujiwara, H. Kitano, H. Yamashita, “Development of omni-directional cart with power assist system,” Nippon Robotto Gakkai Gakujutsu Koenkai Yokoshu, vol. 18, pp.1155-1156, 2000 (in Japanese).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7849-
dc.description.abstract近年來,由於機器人的非工業應用逐漸擴展,設計人與機器人之間的互動關係,加上導引功能等符合需求的智慧型服務機器人,便成為各方積極研究發展的重點。本論文的目的是發展自主輪式服務機器人之移動平台的運動與動態控制之非線性與適應控制器之設計方法與其實現技術。本文所採用服務型機器人之移動平台涵蓋兩輪差速驅動行走系統、動力輪椅兩輪差速驅動行走系統、三全方位輪驅動行走系統、四全方位輪驅動行走系統等受控系統,以設計運動與動態控制器追蹤設定值之非線性控制策略,用以確保控制性能,達到系統調整與軌跡追蹤的目的,而本論文所提出之設計法則,可提供移動機器人專業領域在理論與實際應用上之參考。zh_TW
dc.description.abstractIn recent years, the non-industry applications of robots have attracted much attention in both industry and academia. Hence, design of good interaction and between the human being and the robot and autonomous navigation to conform to the demand intelligent service robot have been prevalent topics for researchers in the robotics society in recent years. This dissertation aims to develop kinematic and dynamic controls of mobile platforms for autonomous service robots. The platforms under consideration cover two-wheeled differential-driving platforms, differential-driving power wheelchair with two omnidirectional caster wheels, three-wheeled omnidirectional mobile platforms, and four-wheeled omnidirectional mobile platforms. Several stable nonlinear control methods using backstepping are proposed to achieve regulation and trajectory tracking control of these mobile platforms. The effectiveness and merits of the proposed controllers are exemplified by conducting several computer simulations and experiments. The proposed techniques may provide useful theoretical and practical references for professionals working in the field of mobile robotics.en_US
dc.description.tableofcontentsContents Acknowledgments......................................i Chinese Abstract....................................ii English Abstract...................................iii Contents .......................................... iv List of Figures ....................................ix List of Tables.....................................xii Nomenclature......................................xiii Chapter 1 Introduction...................................1 1.1 Background ..........................................1 1.2 Related Research ....................................4 1.3 Motivations and Objectives ..........................13 1.4 Contributions of the Dissertation....................15 1.5 Organization of the Dissertation.....................17 Chapter 2 Kinematic and Adaptive Dynamic Tracking Control of a Nonholonomic Two-Wheeled Mobile Robot with Nonlinear Characteristics and uncertainties........................19 2.1 Global Asymptotical Tracking Design in the Kinematics Level................................................... 19 2.1.1 Problem Formulation................................19 2.1.2 Global asymptotical tracking control design........20 2.2 Robust Trajectory-Tracking for Eliminate the Effects of Nonlinear Driving Characteristics.....................24 2.2.1 Robust tracking design via Lyapunov redesign.......25 2.2.2 Robust tracking design via nonlinear damping.......27 2.3 Adaptive Robust Tracking Control.....................28 2.4 Simulations, Experimental Results and Discussion.....32 2.4.1 Computer Simulations and Discussion................32 2.4.2 Experimental Results and Discussion................35 2.5 Concluding Remarks...................................37 Chapter 3 Control and Performance Evaluation of a Power Wheelchair with Two Omnidirectional Caster Wheels .......38 3.1 System Description and Kinematic Model...............38 3.1.1 Brief System Description...........................38 3.1.2 Kinematic Model....................................38 3.2 Kinematics Regulation Controls.......................46 3.2.1 Linearization Controller Design....................46 3.2.2 Lyapunov-Based Controller Design...................47 3.3 Path Following Control...............................49 3.3.1 Problem Formulation................................49 3.3.2 Analysis of Path Following Controllers.............50 3.3.2.1 Path Following with Variable Speed...............50 3.3.2.2 Line Path with Constant Speed....................51 3.3.2.3 Circular Path with Constant Speed................53 3.4 Experimental Results and Discussion................. 53 3.5 Concluding Remarks.................................. 56 Chapter 4 Kinematic and Dynamic Control of a Three-Wheeled Omnidirectional Mobile Platform................. 60 4.1 Kinematic and Dynamic Model in Polar Coordinates.....60 4.1.1 Kinematical Model in Polar Coordinates.............60 4.1.2 Dynamic Model in Polar Coordinates.................63 4.2 Kinematic Controller Design......................... 66 4.2.1 Point-to-point Stabilization.......................66 4.2.2 Trajectory Tracking................................68 4.2.3 Extension to the Path Following Problem............70 4.3 Dynamic Controller Design........................... 72 4.4 Simulations and Discussion.......................... 77 4.4.1 Point-to-point Stabilization.......................77 4.4.2 Straight-line Trajectory Tracking..................78 4.4.3 Circular Trajectory Tracking.......................79 4.4.4 Elliptical Trajectory Tracking.....................80 4.5 Experimental Results and Discussion................. 81 4.5.1 Brief Description of the Experimental omnidirectional Mobile Robot.............................81 4.5.2 Point-to-point Stabilization.......................84 4.5.3 Elliptical Trajectory Tracking.....................84 4.5.4 Circular and Limacon of Pascal Path Following Experiments..............................................85 4.6 Concluding Remarks...................................86 Chapter 5 Kinematic and Dynamic Control of a Four-Wheeled Omnidirectional Mobile Platform..........................90 5.1 Kinematic and Dynamic Model..........................90 5.1.1 Kinematic Model in World Frame.....................90 5.1.2 Dynamic Model in World Frame.......................92 5.2 Kinematic Controller Design..........................99 5.2.1 Point Stabilization................................99 5.2.2 Trajectory Tracking...............................102 5.3 Dynamic Controller Design...........................105 5.4 Simulation, Experimental Results and Discussion.....107 5.4.1 Brief Description of the Experimental Omnidirectional Mobile Robot............................107 5.4.2 Dead Reckoning....................................108 5.4.3 Stabilization.....................................110 5.4.4 Straight-Line Trajectory Tracking.................111 5.4.5Circular Trajectory Tracking.......................114 5.4.6 Elliptic Trajectory Tracking......................114 5.4.7 Dynamic Tracking control..........................117 5.4.8 Experimental Results and Discussion...............120 5.5 Concluding Remarks..................................125 Chapter 6 Conclusions and Future Work ..................127 6.1 Conclusions .......................................127 6.2 Future Work .......................................128 Bibliography ...........................................130en_US
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0301200911122100en_US
dc.subjectService Robotsen_US
dc.subject服務機器人zh_TW
dc.subjectMobile Platformsen_US
dc.subjectDynamic Controlen_US
dc.subject移動平台zh_TW
dc.subject動態控制zh_TW
dc.title自主輪式服務機器人之移動平台的運動與動態控制zh_TW
dc.titleKinematic and Dynamic Control of Some Wheeled Mobile Platforms for Autonomous Service Robotsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.