Please use this identifier to cite or link to this item:
標題: 堆疊型變壓器之效能提升與電路應用
Performance improvement and circuit application of stacked Transformer
作者: 葉士賢
Yeh, Shih-Hsien
關鍵字: transformer;變壓器;stacked;turn ratio;coupling coefficient;variable width;VCO;堆疊型;圈數比;耦合係數;可變寬度;電壓控制震盪器
出版社: 電機工程學系所
引用: [1] M. Stmayer, J. Cabanillas, and G. M. Rebeiz,“A low-noise transformer based 1.7 GHz CMOS VCO,”IEEE International Solid-State Circuits Conference, 3-7 Feb. 2002 Page(s):286 - 287 vol.1 [2] L.L.K. Leung; K.W.C.Chui; H.C, Luong”A 1V Dual-Band VCO Using an Integrated Variable Inductor”Asian Solid-State Circuits Conference, Nov. 2005 Page(s):273 – 276 [3] D. Baek; T. Song; E. Yoon; S. Hong,”8-GHz CMOS quadrature VCO using transformer-based LC tank” Microwave and Wireless Components Letters, IEEE Volume 13, Issue 10, Oct. 2003 Page(s):446 – 448 [4] O.El-Gharniti,; E. Kerherve,; J.-B. Begueret,” A 5 GHz Low Noise Amplifier with On-Chip Transformer-Balun”Microwave Conference, 2006. 36th European Sept. 2006 Page(s):1648 – 1651 [5] P. Andreani; J.R. Long,”Misconception regarding use of transformer resonators in monolithic oscillators”;Electronics Letters Volume 42, Issue 7, 30 March 2006 Page(s):387 – 388 [6]K. B. Ashby, W. C. Finley, J. J. Bastek, S. Moinian, and I. A. Koullias, “High Q inductors for wireless applications in a complementary silicon bipolar process,” IEEE Journal of Solid-State Circuits Volume 31, Issue 1, Jan. 1996 Page(s):4 – 9 [7]J. N. Burghartz, M. Soyuer, and K. Jenkins, “Microwave inductors and capacitors in standard multilevel interconnect silicon technology,” IEEE Transactions on Microwave Theory And Techniques, vol. 44, no. 1, pp. 100-103, Jan. 1996. [8]L. Zu, Y. Lu, R. C. Frye, M. Y. Law, S. Chen, D. Kossiva, J. Lin, and K. L. Tai, ”High Q-factor inductors integrated on MCM Si substrates,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, Aug. 1996, vol.19, no.3, pp. 635-43. [9] R. B. Merrill, T. W. Lee, Hong You, R. Rasmussen, and L. A. Moberly,“Optimization of high Q integrated inductors for multi-level metal CMOS,” International Electron Devices Meeting, 1995., 10-13 Dec.1995 Page(s):983 - 986 [10] J. Y.-C. Chang and A. A. Abidi,”Large suspended inductors on silicon and their use in a 2-m CMOS RF amplifier,” IEEE Electron Device Letters, vol. 14, no. 5, pp. 246-248, 1993. [11] J. Craninckx; M.S.J. Steyaert,;” A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors” IEEE Journal of Solid-State Circuits Volume 32, Issue 5, May 1997 Page(s):736 – 744 [12 ] J.Craninckx,; M.S.J. Steyaert,; Solid-State Circuits, IEEE Journal of” A fully integrated CMOS DCS-1800 frequency synthesizer” Volume 33, Issue 12, Dec. 1998 Page(s):2054 – 2065 [13] L. Villegas, J.M.; J. Samitier; C. Cane ; P. Losantos,; J. Bausells,”Improvement of the quality factor of RF integrated inductors by layout optimization,” in IEEE Transactions on Microwave Theory And techniques ,VOL.48 NO.1 JANUARY pp.76-83, 2000. [14] Y.S. Lin”Implementation of perfect-magnetic-coupling ultralow-loss transformer in RFCMOS technology” Electron Device Letters, IEEE Volume 26, Issue 11, Nov. 2005 Page(s):832 – 835 [15] K. Chong; Y.H. Xie;”High-performance on-chip transformers” Electron Device Letters, IEEE Volume 26, Issue 8, Aug. 2005 Page(s):557 – 559 [16] Y. Mayevskiy; A. Watson; P. Francis,; K. Hwang; A. Weisshaar,”A new compact model for monolithic transformers in silicon-based RFICs” Microwave and Wireless Components Letters, IEEE Volume 15, Issue 6, June 2005 Page(s):419 - 421 [17] W.Z. Chen, K.C. Hsu”Miniaturized 3-Dimensional Transformer Design” Custom Integrated Circuits Conference, 2005. Proceedings of the IEEE 200518-21 Sept. 2005 Page(s):285 - 288 [18] N. Fong, J.O. Plouchart, N. Zamdmer, J. Kim, K. Jenkins, C. P. Garry Tarr, “High-Performance and Area-Efficient Stacked Transformers for RF CMOS Integrated Circuits” Microwave Symposium Digest, 2003 IEEE MTT-S International Volume 2, 8-13 June 2003 Page(s):967 - 970 vol.2 [20] F. Ellinger; H. Jackel;W. Bachtold.”Varactor-loaded transmission-line phase shifter at C-band using lumped elements”Microwave Theory and Techniques, IEEE Transactions on Volume 51, Issue 4, Part 1, April 2003 Page(s):1135 – 1140 [21] D. Dunwell;B. Frank ”Accumulation-Mode MOS Varactors for RF CMOS Low-Noise Amplifiers” Silicon Monolithic Integrated Circuits in RF Systems, 2007 Topical Meeting on 10-12 Jan. 2007 Page(s):145 – 148 [22] S.H. Shin; H.J. Yoo, ”A Multistandard RF Front-End Using Varactor Controlled Tunable Interstage Matching Network” Radio and Wireless Symposium, 2007 IEEE 9-11 Jan. 2007 Page(s):181 - 184 [23] Tanaka, Hiroki; Ohira, Takashi “Beam-steerable Planar Array Antennas Using Varactor Diodes for 60-GHz-band Applications” European Microwave Conference, 2003. 33rd Oct. 2003 Page(s):1067 – 1070 [24] Andreani, P.; Mattisson, S. “On the use of MOS varactors in RF VCOs” IEEE Journal of Solid-State Circuits Volume 35, Issue 6, June 2000 Page(s):905 – 910 [25] Maget, J.; Tiebout, M.; Kraus, R. “MOS varactors with n- and p-type gates and their influence on an LC-VCO in digital CMOS” IEEE IEEE Journal of Solid-State Circuits Volume 38, Issue 7, July 2003 Page(s):1139 – 1147 [26] Qureshi, J.H.; Kim, S.; Buisman, K.; Huang, C.; Pelk, M.J.; Akhnoukh, A.; Larson, L.E.; Nanver, L.K.; de Vreede, L.C.N. “A Low-Loss Compact Linear Varactor Based Phase-Shifter” Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE 3-5 June 2007 Page(s):453 – 456 [27] H.M. Hsu and C. W. Tseng, “Design of on-chip transformer with various coil widths to achieve minimal metal resistance,” IEEE Electron Device Letters, vol.28, pp.1029-1032, November 2007. [28] El-Gharniti, O.; Kerherve, E.; Begueret, J.-B “Modeling and Characterization of On-Chip Transformers for Silicon RFIC”Microwave Theory and Techniques, IEEE Transactions on Volume 55, Issue 4, April 2007 Page(s):607 - 615 [29] Italia, A.; Carrara, F.; Ragonese, E.; Palmisano, G.”The transformer characteristic resistance and its application to the design of rf circuits”Research in Microelectronics and Electronics, 2005 PhD Volume 2, 25-28 July 2005 Page(s):39 – 42 [30] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE Journal of Solid-State Circuits, vol. 33, no. 10, pp. 1470–1481, Oct. 1998. [31] J. J. Zhou and D. J. Allstot, “Monolithic transformers and their applications in a differential CMOS RF low-noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 2020–2027, Dec. 1998. [32] D. J. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18- _m CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 427–435, Mar. 2003. [33] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sep. 2000. [34] J. R. Long,, “A low-voltage 5.1–5.8-GHz image-reject down converter RF IC,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1320–1328, Sep. 2000. [35] J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1–5.8-GHz image reject receiver with wide dynamic range”, IEEE Journal of Solid-State Circuits,vol. 35, no. 12, pp. 1917–1926, Dec. 2000. [36] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology”, IEEE Journal of Solid-State Circuits, vol. 36,no. 4, pp. 620–628, Apr. 2001. [37] W. Bakalski, W. Simbürger, R. Thüringer, A. Vasylyev, and A. L.Scholtz,“A fully integrated 5.3-GHz 2.4-V 0.3-W SiGe bipolar power amplifier with 50- output”, IEEE Journal of Solid-State Circuits vol. 39, no.7, pp. 1006–1014, Jul. 2004. [38] I. Bhatti, R. Roufoogaran, and J. Castaneda, “A fully integrated transformer-based front-end architecture for wireless transceivers,” Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International 6-10 Feb. 2005 Page(s):106 - 587 Vol. 1 [39] T. Copani, S. A. Smerzi, G. Girlando, and G. Palmisano, “A 12-GHz silicon bipolar dual-conversion receiver for digital satellite applications,” IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1278–1287, Jun. 2005. [40] A. Italia, L. La Paglia, A. Scuderi, F. Carrara, E. Ragonese, and G.Palmisano, “A silicon bipolar transmitter front-end for 802.11a and HIPERLAN2 wireless LANs,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1451–1459, Jul. 2005. [41] John W. M. Rogers, and Calvin Plett,”A 5-GHz Radio Front-End With Automatically Q-Tuned Notch Filter and VCO”, IEEE Journal of Solid-State Circuits, VOL. 38, NO. 9, SEPTEMBER 2003 [42] Tonio Biondi, Angelo Scuderi, Egidio Ragonese, Giuseppe Palmisano, “Analysis and Modeling of Layout Scaling in Silicon Integrated Stacked Transformers” IEEE Transactions on Microwave Theory and Techniques, VOL. 54, NO. 5, MAY 2006 [43] Ouail El-Gharniti, Eric Kerherve, and Jean-Baptiste Begueret “Characterization of Si-Based Monolithic Transformers with Patterned Ground Shield” Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE 11-13 June 2006 Page(s):4 pp. [44] A. Rofougaran, J. Y. C. Chang, M. Rofougaran, and A. A. Abidi, “A 1 GHz CMOS RF front-end IC for a direct conversion wireless receiver”, IEEE Journal of Solid-State Circuits, vol. 31, pp. 880–889, July 1996. [45] C. Y. Chi and G. M. Rebeiz, “Planar microwave and millimeter wave lumped element and coupled line filters using micromachining techniques”, Microwave Theory and Techniques, IEEE Transactions on Publication Date: Apr 1995 Volume: 43, Issue: 4, Part 1-2 On page(s): 730-738 [46] J. M. López-Villegas, J. Samitier, J. Bausells, A. Merlos, C. Cané, and R. Knöche, “Study of integrated RF passive components performed using CMOS and Si micromachining technologies”, J. Micromech. Microeng., vol. 7, pp. 162–164, 1997. [47] C.P. Yue, S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs”, IEEE Journal of Solid-State Circuits Volume 33, Issue 5, May 1998 Page(s):743 - 752 Digital Object Identifier 10.1109/4.668989 [48] J. Craninckx and S. J. Steyaert, “A 1.8-GHz low- phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 736–744, May 1997. [49] H.M. Greenhouse, “Design of Planar Rectangle Microelectronic Inductors”, Parts, Hybrids, and Packaging, IEEE Transactions on Publication Date: Jun 1974 Volume: 10, Issue: 2 On page(s): 101- 109 [50] C. P. Yue, and S. S. Wong,“Physical modeling of spiral inductors on silicon,” Electron Devices, IEEE Transactions on Volume 47, Issue 3, March 2000 Page(s):560 - 568 [51] F. W. Grover, “Inductance Calculations”, Van Nostrand, Princeton, N.J., 1946; reprinted bv Dover Publications. New York, N.Y., 1962. [52] [53] C.C. Tang, C.H. Wu, S.I. Liu,”Miniature 3-D Inductors in Standard CMOS Process,” IEEE Journal of Solid-State Circuits, vol.37.NO.4, April 2002 pp.471-480 [54] M. Danesh, J. R. Long, ”Differentially Driven Symmetric Microstrip Inductors ”, Microwave Theory and Techniques, IEEE Transactions on Volume 50, Issue 1, Part 2, Jan. 2002 Page(s):332 - 341 [55] A. L. Niknejad, R. G. Meyer, “Design, Simulation and Application of Inductors and Transformers for Si RF ICs,” Circuits and Devices Magazine, IEEE Volume 17, Issue 3, May 2001 Page(s):59 - 59 [56] W. B. Kuhn, N. M. Ibrahim,” Analysis of Current Crowding Effects in Multiturn Spiral Inductors” IEEE Transactions on Microwave Theory and Techniques, VOL. 49 NO. 1,JANUARY 2001.pp.31-38 [57] B.L. Ooi, D.X. Xu, P.S. Kooi, and F.J. Lin,”An Improved Prediction of Series Resistance in Spiral Inductor Modeling With Eddy-Current Effect,” IEEE Transactions on Microwave Theory and Techniques, VOL. 50, NO. 9, SEPTEMBER 2002,pp.1143-1149 [58] K. Y. Tong and C. Tsui, ”A Physical Analytical Model of Multilayer On-Chip Inductor,” IEEE Transactions on Microwave Theory and Techniques, VOL. 53, NO. 4, APRIL 2005,pp.1143-1149 [59] J. Zou, C. Liu, Drew R. Trainor,J. Chen,J. E. Schutt-Aine, P. L.Chapman,” Development of Three-Dimensional Inductor Using Plastic Deformation Magnetic Assembly(PDMA),”Microwave Theory and Techniques, IEEE Transactions onVolume 51, Issue 4, Part 1, April 2003 Page(s):1067 – 1075 [60] [61] S.G. Lee “Area efficient and symmetric design of monolithic transformers for silicon RF ICs” TENCON 99. Proceedings of the IEEE Region 10 Conference Volume 2, 15-17 Sept. 1999 Page(s):880 - 882 vol.2 [62] 蔡明璋” 高耦合變壓器與低功率混頻器之研究” 中華民國九十六年七月 [63] 詹凱淵 “可變繞線寬度電感與雙閘極金氧半場效電晶體之設計” 中華民國九十六年七月
本論文主要分為三個主題。第一個主題為實現圈數比為1:n同時保有高耦合係數之堆疊變壓器。以往堆疊變壓器在圈數比為1:1的結構下,耦合係數可達到0.9,但在非1:1的圈數比下,就無法達到較高的耦合係數,因此,我們使用雙圈堆疊變壓器結構,並利用多層金屬層的佈局方式,設計六個面積不同的堆疊變壓器並分為兩組,兩組變壓器之圈數比分別約為1.59與1.9,最後量測出之耦合係數分別為0.955與0.89。實驗結果顯示出有別於以往的高耦合係數堆疊變壓器,只能在圈數比為1:1的結構下才有高耦合係數,本文之堆疊變壓器在圈數比為1:n的情況下也可得到高耦合係數。在實現圈數比1:n高耦合係數變壓器後,本文將對變壓器的面積效應進行分析,本文設計六個不同面積大小之堆疊變壓器,最後將選出有最佳佈局參數的變壓器。第二個主題為可變寬度堆疊變壓器的實現。利用本實驗室指導教授許恆銘教授以及曾建文學長發表之阻值最佳化方式,套用至對稱型堆疊變壓器以及堆疊型變壓器兩種不同結構的變壓器上,此阻值最佳化方法可降低變壓器的繞線電阻,使其在同樣自感值下,能較固定寬度變壓器有著更高的Q值,改善幅度達10%,進而提升變壓器特徵阻抗,且不會影響到耦合係數。第一、第二個主題所有的堆疊型變壓器皆使用90nm的製程實現,並證明其在高頻時的效能改善。¬第三個主題為利用變壓器之電壓控制振盪器(VCO),本電壓控制振盪器最高操作頻率為2.4GHz,使用變壓器取代電感,與可變電容並聯做為電壓控制振盪器的諧振電路,可降低相位雜訊,最後量測結果為在2.4GHz時的相位雜訊為-87.6dBc/Hz,在2.17GHz時為-117dBc/Hz,可調範圍為200MHz。本電壓控制振盪器以TSMC 0.18μm實現。

This thesis includes three topics, the first topic is to realize a stacked transformer has both different turn ratio and high coupling factor simultaneously. In report literature, the turn ratio of transformer is 1:1 and the coupling factor is 0.9. Generally, the turn ratio changes from 1:1 to 1:n, the resulted transformer can''t reach the high coupling factor. Accordingly, the stacked transformer with 2-turned is proposed in this thesis. In this work, we design six stacked transformers, and then divide them into two groups with different turn ratio: 1.59 and 1.9. Measurement results show that coupling factor of two groups achieves value of 0.955 and 0.89, respectively. According to previous report, the 1:1 stacked transformer could reach higher coupling factor than 1:n stacked transformer. However, the experiment indicates that the 1:n stacked transformers could have perfect coupling factor performance.
Secondly, the investigation on the chip area effect is addressed in these transformers, and then the optimization layout among the six 2-turned stacked transformers. The corresponding topic is to realize a variable widths stacked transformers. When transformers utilize variable widths, it could reduce coil resistance, improve the Q factor about 10% and transformer efficiency compare to a fixed width transformer.
Finally, we proposed a 2.4GHz voltage control oscillator (VCO) using transformer. The proposed VCO replace the inductor by using the transformer in the L-C tank, due to characteristic of reduced phase noise, the VCO was fabricated in a TSMC 0.18μm CMOS technology. Measurement result shows that the -117dBc/Hz of the phase noise of the VCO at 2.17GHz and 200MHz of the tuning range.
其他識別: U0005-0408200812063400
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.