Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7888
標題: 實現於多輸入多輸出-正交分頻多工無線通訊系統之基頻接收機電路
Implementation of Baseband Receiver Circuits for MIMO-OFDM Wireless Communication Systems
作者: 林光浩
Lin, Kuang-Hao
關鍵字: OFDM;正交分頻多工;MIMO;CFO;IQ Imbalance;Precoding;Detector;多輸入多輸出;載波頻率漂移;IQ不平衡;預先編碼器;偵測器
出版社: 電機工程學系所
引用: [1] A. F. Molisch, Wireless Communications, Wiley, 2006. [2] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” Bell Systems Technical Journal, vol. 46, pp. 1775-1796, Dec. 1966. [3] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, pp.665-675, July 1985. [4] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye Li M. A. Ingram, and T.G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. IEEE, vol. 92, pp. 271-294, Feb. 2004. [5] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskei, “An overview of MIMO communications - a key to gigabit wireless,” Proc. IEEE, vol. 92, pp. 198-218, Feb. 2004. [6] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Standard 802.11a-1999. [7] IEEE P802.11n/D1.0 Draft Amendment to STANDARD [FOR] Information Technology - Telecommunications and information exchange between systems - Local and Metropolitan networks-Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Enhancements, Mar. 2006. [8] Local and Metropolitan Area Networks—Part 16, Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a. [9] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [10] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999. [11] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998. [12] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering channel,” in Proc. Int. Symp. Signals, Systems and Electronics, pp. 295-300, Oct. 1998. [13] K. J. Kim, M.-O. Pun, and R. A. litis, “QRD-Based Precoded MIMO-OFDM Systems with Reduced Feedback,” IEEE Int. Conf. Commun., pp. 708-712, May 2008. [14] The article of MIMO wireless communication in http://en.wikipedia.org /wiki/Multiple-input_multiple-output. [15] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams 2002. [16] D. Tandur and M. Moonen, “Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems,” IEEE Trans. Signal Process., vol. 55, pp. 5246-5252, Nov. 2007. [17] I. Barhumi and M. Moonen, “IQ-imbalance compensation for OFDM in the presence of IBI and carrier-frequency offset,” IEEE Trans. Signal Process., vol. 55, pp. 256-266, Jan. 2007. [18] J.-Y. Yu, M.-F. Sun, T.-Y. Hsu, and C.-Y. Lee, “A novel technique for I/Q imbalance and CFO compensation in OFDM systems,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 6, pp. 6030-6033, May 2005. [19] E. Cetin, I. Kale, and R. C. S. Morling, “Joint compensation of IQ-imbalance and carrier phase synchronization errors in communication receivers,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 5, pp. 4481-4484, May 2005. [20] Y. Yao and G. B. Giannakis, “Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems,” IEEE Trans. Commun., vol. 53, pp.173-183, Jan. 2005. [21] Y. Sun, Z. Xiong, and X. Wang, “EM-based iterative receiver design with carrier-frequency offset estimation for MIMO OFDM systems,” IEEE Trans. Commun., vol. 53, pp. 581-586, April 2005. [22] L. Weng, E. K. S. Au, P. W. C. Chan, R. D. Murch, R. S. Cheng, W. H. Mow, and V. K. N. Lau, “Effect of carrier frequency offset on channel estimation for SISO/MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, pp. 1854-1863, May 2007. [23] Y. Zeng, A. R. Leyman, and T.-S. Ng, “Joint semiblind frequency offset and channel estimation for multiuser MIMO-OFDM uplink,” IEEE Trans. Commun., vol. 55, pp. 2270-2278, Dec. 2007. [24] Y. Jiang, H. Minn, X. Gao, X. You, and Y. Li, “Frequency offset estimation and training sequence design for MIMO OFDM,” IEEE Trans. Wireless Commun., vol. 7, pp. 1244-1254, April 2008. [25] J. Chen, Y.-C. Wu, S. Ma, and T.-S. Ng, “Joint CFO and channel estimation for multiuser MIMO-OFDM systems with optimal training sequences,” IEEE Trans. Signal Process., vol. 56, pp. 4008-4019, Aug. 2008. [26] X. He, X. Peng, Y. Xiao, and S. Li, “A novel time and frequency synchronization technique for MIMO-OFDM system,” in Proc. Fourth Advanced Int. Conf. Telecommun., pp. 360-363, June 2008. [27] H. Wang, Q. Yin, L. Ding, and K. Deng, “Low complexity blind carrier frequency offset estimation for MIMO-OFDM systems,” in Proc. IEEE Int. Conf. Commun., pp. 360-363, June 2008. [28] J. Granado, A. Torralba, J. Chavez, and V. Baena-Lecuyer, “Design of an efficient CORDIC-based architecture for synchronization in OFDM,” IEEE Trans. Consum. Electron., vol. 53, pp. 774-782, Aug. 2006. [29] S. Menon, G. Cho, and M. Soderstrand, "An improved numerically controlled digital oscillator," IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol.2, pp. 1040-1044, 2003. [30] H. Zou and B. Daneshrad, "VLSI implementation for a low power mobile OFDM receiver ASIC," IEEE Wireless Communications and Networking Conference, vol. 4, pp. 2120-2124, Mar. 2004. [31] Y. Kato, T. Ikuno, and Y. Sanada, “IQ imbalance compensation scheme for MB-OFDM using transmission diversity,” IEICE Trans. Fundamentals, vol.E89-A, pp. 3066-3074, Nov. 2006. [32] H. Zareian and V. T. Vakili, “Analytical BER performance of M-QAM-OFDM systems in the presence of IQ imbalance,” Int. Conf. Wireless Optical Commun. Networks, July 2007. [33] A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, pp. 3257-3268, Aug. 2005. [34] I. Held, O. Klein, A. Chen, and V. Ma, “Low complexity digital IQ imbalance correction in OFDM WLAN receivers,” in Proc. IEEE Veh. Technol. Conf., vol. 2, pp. 1172-1176, May 2004. [35] J. Tubbax, B. Come, L. VanderPerre, S. Donnay, M. Engels, H. De Man, and M. Moonen, “Compensation of IQ imbalance and phase noise in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, pp. 872-877, May 2005. [36] G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 4, pp. 673-680, Mar. 2005. [37] B. Ai, Z.-X. Yang, C.-Y. Pan, J.-H. Ge, Y. Wang, and Z. Lu, “On the synchronization techniques for wireless OFDM systems,” IEEE Trans. Broadcasting, vol. 52, pp. 236-244, June 2006. [38] R. Chen, C. Hou, and J. Guo, “Symbol timing and channel estimation of IEEE802.11a based on OFDM,” IEEE Canadian Conf. Elect. Comput. Eng., vol.3, pp. 1547-1550, May 2003. [39] K.-W. Yip, Y.-C. Wu, and T.-S. Ng, “A new multiplierless correlator for timing synchronization in IEEE 802.11a WLANs,” in Proc. IEEE Int. Symp. Circuit and Systems, vol. 2, pp. II344-II347, May 2003. [40] C.-S. Peng and K.-A. Wen, “Synchronization for carrier frequency offset in wireless LAN 802.11a system,” in Proc. IEEE Int. Symp. Wireless Personal Multimedia Commun., vol.3, pp. 1083-1087, Oct. 2002. [41] H. Zheng, J. Tang, and B. Shen, “Low-complexity joint synchronization of symbol timing and carrier frequency for OFDM systems,” IEEE Trans. Consum. Electron., vol. 51, pp. 783-789, Aug. 2005. [42] H. Schulze and C. Lüder, Theory and Applications of OFDM and CDMA: Wideband Wireless Communications. John Wiley and Sons, 2005. [43] S. J. Yi, C. C. Tsimenidis, and B. S. Sharif, “Transmitter precoding in downlink MC-CDMA systems over frequency-selective Rayleigh fading channels,” IEE Proc. Commun., vol.152, pp. 952-958, Dec. 2005. [44] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum systems. John Wiley and Sons, 2003. [45] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., vol. 35, pp. 126-133, Dec. 1997. [46] Z. Pu, X. You, S. Cheng, and H. Wang, “Transmission and reception of TDD multicarrier CDMA signals in mobile communications system,” in Proc. IEEE Veh. Tech. Conf., pp. 2134-2138, May 1999. [47] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna and multiuser communications,” IEEE Trans. Wireless Commun., vol. 3, pp. 1305-1316, July 2004. [48] M. Debbah, P. Loubaton, and M. de Courville, “Asymptotic performance of successive interference cancellation in the context of linear precoded OFDM systems,” IEEE Trans. Commun., vol. 52, pp. 1444-1448, Sept. 2004. [49] S. J. Yi, C. C. Tsimenidis, and B. S. Sharif, “Transmitter precoding based on partial equalization for downlink TDD MC-CDMA systems,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., vol. 2, pp. 1224-1228, Sept. 2005. [50] N. Benvenuto, P. Bisaglia, and F. Boccardi, “Maximum sum-rate linear beamforming strategies for downlink TDD MC-CDMA systems,” in Proc. Int. Symp. Wireless Commun. Syst., pp. 529-533, Sept. 2005. [51] Y.-C. Liang, “Asymptotic performance of BI-GDFE for large isometric and random precoded systems,” in Proc. IEEE Veh. Tech. Conf., vol. 3, pp. 1557-1561, May-1 2005. [52] I. Cosovic, S. Sand, and R. Raulefs, “A non-linear precoding technique for downlink MC-CDMA,” in Proc. IEEE Veh. Tech. Conf. (VTC'05), vol. 3, pp. 1711-1715, June 2005. [53] J. Liu and W. A. Krzymien, “Improved Tomlinson-Harashima precoding for the downlink of multiple antenna multi-user systems,” in Proc. IEEE Wireless Commun. Networking Conf., vol. 1, pp. 466-472, Mar. 2005. [54] J. Liu and W. A. Krzymien, “A novel nonlinear precoding algorithm for the downlink of multiple antenna multi-user systems,” in Proc. IEEE Veh. Tech. Conf. (VTC'05), vol. 2, pp. 887-891, May-1 2005. [55] R. Habendorf, R. Irmer, W. Rave, and G. Fettweis, “Nonlinear multiuser precoding for non-connected decision regions,” in Proc. 6th Workshop Signal Process. Advances Wireless Commun., pp. 535-539, June 2005. [56] L. Sanguinetti, M. Morelli, and I. Cosovic, “Non-linear Pre-filtering techniques for MC-CDMA downlink transmissions” IEEE Global Telecommun. Conf., vol. 6, pp. 3201-3205, Dec. 2005. [57] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture for matrix inversion using modified Gram-Schmidt based QR decomposition,” in Proc. IEEE Int. Conf. VLSI Design, pp. 836-841, Jan. 2007. [58] Z. Liu, K. Dickson, and J. V. McCanny, “Application-specific instruction set processor for SoC implementation of modern signal processing algorithms,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 52, pp. 755-765, April 2005. [59] A. Maltsev, V. Pestretsov, R. Maslennikov, and A. Khoryaev, “Triangular systolic array with reduced latency for QR-decomposition of complex matrices,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 385-388, May 2006. [60] Z. Wu and C. R. Nassar, “FD-MC-CDMA: A Frequency-Based Multiple Access Architecture for High Performance Wireless Communication,” IEEE Trans. Veh. Tech., vol. 54, pp. 1392-1399, July 2005. [61] A. C. McCormick, P. M. Grant, J. S. Thompson, T. Arslan, and A. T. Erdogan, “Low power receiver architectures for multi-carrier CDMA,” IEE Proc. Circuits Devices Syst., vol. 149, pp. 227-233, Aug. 2002. [62] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission. John Wiley and Sons, 2002. [63] A. van Zelst and T. C. W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Trans. Signal Process., vol. 52, pp. 483-494, Feb. 2004. [64] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [65] D. Gesbert, M. Shafi, D.-s. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, pp. 281-302, April 2003. [66] Y. Wu, M. Juntti, and T. J. Lim “Detectors and asymptotic analysis for bandwidth-efficient space-time multiple-access systems,” IEEE Trans. Commun., vol. 54, pp. 1068-1080, June 2006. [67] R. Doostnejad, T. J. Lim, and E. Sousa, “Space-time multiplexing for mimo multiuser downlink channels,” IEEE Trans. Wireless Commun., vol. 5, pp. 1726-1734, July 2006. [68] T. Cui, C. Tellambura, and Y. Wu, “Constrained detection for spatial- multiplexing multiple-input-multiple-output systems,” IEEE Trans. Veh. Technol., vol. 57, pp. 1537-1547, May 2008. [69] C.-J. Ahn, “Parallel detection algorithm using multiple QR decompositions with permuted channel matrix for SDM/OFDM,” IEEE Trans. Veh. Technol., vol. 57, pp. 2578-2582, July 2008. [70] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding,” IEEE J. Solid-State Circuits, vol. 40, pp. 1566-1577, July 2005. [71] A. Burg, M. Wenk, M. Zellweger, M. Wegmueller, N. Felber, and W. Fichtner, “VLSI implementation of the sphere decoding Algorithm,” in Proc. ESSCIRC-2004, Leuven, Belgium, pp. 303-306, Sep. 2004. [72] J. Jalden and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Trans. Signal Process., vol. 53, pp. 1474-1484, Apr. 2005. [73] K.-W. Wong, C.-Y. Tsui, R. S.-K. Cheng, and W.-H. Mow, “A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE Int. Symp. Circuits Syst., pp. III-273-III-276, May 2002. [74] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, pp. 491-503, Mar. 2006. [75] Q. Li and Z. Wang, “Improved K-Best sphere decoding architecture for MIMO systems,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1159-1162, May 2006. [76] S. Noh, Y. Jung, S. Lee, and J. Kim, “Low-complexity symbol detector for MIMO-OFDM-based wireless LANs,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 53, pp. 1403-1407, Dec. 2006. [77] F. Sobhanmanesh and S. Nooshabadi, “Parametric minimum hardware QR-factoriser architecture for V-BLAST detection,” IEE Proc. Circuits Devices Syst., vol. 153, pp. 433-441, Oct. 2006. [78] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A fixed-point implementation for QR decomposition,” in Proc. IEEE Dallas Workshop Design Applicat. Integration Software, pp. 75-78, Oct. 2006. [79] S.-Fu Hsiao and J.-M. Delosme, “Householder CORDIC algorithms,” IEEE Trans. Comput., vol. 44, pp. 990-1001, Aug. 1995. [80] S. J. Leon, Linear Algebra with Applications, New Jersey: Pearson, 2006.
摘要: 
本論文針對以IEEE 802.11n為基礎架構並實現於多輸入多輸出-正交分頻多工無線通訊系統之基頻接收機電路,主要電路設計包含載波頻率漂移補償與IQ不平衡補償,利用THP技術之MC-CDMA系統與多輸入多輸出-正交分頻多工偵測器之設計。首先,利用低複雜度之架構結合載波頻率漂移與IQ不平衡補償電路,並設計硬體共用以減少15.7%硬體面積。
接著研究探討THP應用於MC-CDMA下載系統,主要由於多使用者相互干擾導致接收端的設計複雜度,故本研究利用THP與MMSE演算法實現與本系統中,促使簡化接收端硬體之設計,在傳送端硬體架構設計上提出改良型QR分解與分析硬體所需的位元數。針對一個n階的方形矩陣進行QR分解所需的時脈數僅為n(2n+3)。
最後在MIMO-OFDM偵測器上,我們提出一種改良式的K-Best球型編碼演算法與硬體架構設計,其使用一種具規則性的方式提供不同的偵測層各自的K值。其位元錯誤率較傳統的K-Best球型編碼演算法效能更佳。另外,在偵測電路之前的預先處理器QR分解,利用Givens rotation方法來實現硬體,其優點可以比傳統的TSA架構有較少的運算時間,與Gram-Schmidt架構相較下有較小的硬體面積。

This dissertation presents an implementation of baseband receiver circuits for MIMO-OFDM wireless communication systems based on IEEE 802.11n specification. The receiver includes three major blocks: compensation of carrier frequency offset (CFO) and IQ imbalance, M-modification MC-CDMA system using the Tomlinson-Harashima Precoding (THP), and MIMO-OFDM detection. First, the compensation of CFO and IQ imbalance circuit is designed with a low-complexity architecture. The integrated CFO and IQ compensation circuit reduces 15.7% of area by using hardware sharing.
The second study investigates the feasibility of applying THP to MC-CDMA system downlinks, in which multiple-access interference and possible complexity in the mobile terminal (MT) are major burdens. A THP based on the minimum mean-square error (MMSE) criterion is also presented, making it possible to realize a low-complexity receiver at the MT. The hardware architecture of the MMSE THP with modified QR decomposition at the transmitter is presented, along with the required word-length analyzed. For a generic square matrix of order n RQ decomposition, the latency required is n(2n+3) clock cycles only.
At last, in MIMO-OFDM detection, we presented an improved K-Best sphere decoding algorithm and hardware architecture. It uses a regular way to select K value for different detected layers. The bit error rate of the proposed method was better than the conventional K-Best sphere decoding algorithm. In addition, a modified implementation of QR decomposition for detection pre-processor is presented based on the Givens rotation method. Implementation results reveal that the proposed recursive QR decomposition (RQRD) architecture has lower clock latency than triangular systolic array (TSA) structures and smaller hardware area than Gram-Schmidt structures.
URI: http://hdl.handle.net/11455/7888
其他識別: U0005-0601200910451800
Appears in Collections:電機工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.