Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7899
DC FieldValueLanguage
dc.contributor.advisor莊家峰zh_TW
dc.contributor.advisorChia-Feng Juangen_US
dc.contributor.author陳亮佐zh_TW
dc.contributor.authorChen, Liang-Tsoen_US
dc.date2004zh_TW
dc.date.accessioned2014-06-06T06:40:42Z-
dc.date.available2014-06-06T06:40:42Z-
dc.identifier.urihttp://hdl.handle.net/11455/7899-
dc.description.abstract本論文提出一個基於輪廓模糊類神經網路之移動物體辨識系統。在擷取移動物體方面,我們用了一連串的影像處理方法;這些方法包括:現有影像與背景影像之灰階值相減,Sobel運算,型態學處理。在獲取物體的特徵值方面,我們運用輪廓為基礎的模型。使用了輪廓追蹤以及離散傅立葉轉換(DFT)來獲取輪廓的特徵值。另外一個特徵值是長寬比,這個數值可以從擷取物體的垂直投影和水平投影獲得。最後我們使用自我架構類神經模糊推論網路(SONFIN)來訓練以及辨識移動物體。實驗結果顯示我們可以精確的分辨出行人、機車、汽車及狗四種移動物體,同時使用SONFIN的結果比使用類神經網路的辨識結果來得好。zh_TW
dc.description.abstractMoving object recognition by contour-based neural fuzzy network is proposed in this thesis. To extract a moving object, we use a series of image processes, including gray-based subtraction between current and background images, Sobel operation, and morphological operation. To extract object's feature vector, we use contour-based model. Parts of the features are obtained by contour following followed by Discrete Fourier Transform (DFT). Another feature is length-width ratio, which can be derived from vertical and horizontal projection of the extracted object. Finally, we use the Self-Constructing Neural Fuzzy Inference Network (SONFIN) to train and recognize moving objects. The experiment shows we can recognize four moving objects, including a pedestrian, a motorcycle, a car, and a dog, exactly. The performance of SONFIN is shown to be better than a neural network from comparison.en_US
dc.description.tableofcontentsContents Chinese Abstract ……………………………………………………….……i English Abstract…………………………………………………………….ii Acknowledgments…………………………………………………....….…iii Contents…….…..…………………………………………………iv List of Figures…………………………………………………………….....vi List of Tables……...………………………………………………………viii Chapter 1 INTRODUCTION………………..………………………1 1.1 Survey………………………………….……………….………1 1.2 Literature Review …………………………..………..………2 1.3 Organization of The Thesis…………………………..………..4 Chapter 2 MOVING OBJECT EXTRACTION…..……….………5 2.1 Overview……………….……………………….…………5 2.2 Image Model………..…..………………………………5 2.3 Gray-Based Subtraction……………………………………….6 2.4 Edge-Based Subtraction………………………………..…….8 2.5 Morphological Operators………………………………………..….11 2.6 Concluding Remarks..……………………………………………...14 Chapter 3 FEATURES EXTRACTION…………………15 3.1 Overview……….………..………….……….…………15 3.2 Length-Width Ratio Calculation…..………………………16 3.3 Contour Feature Extraction………………………..………………19 3.4 Concluding Remarks…………………………………………..26 Chapter 4 TRAINING AND RECOGNITION BY SONFIN……....27 4.1 Overview…………….…………..……………….….……27 4.2 Architecture of SONFIN…………………………….….28 4.3 Structure and Parameter Learning of SONFIN………………33 4.4 Training and Recognition by SONFIN…………………….35 4.5 Concluding Remarks….…………………………………………..36 Chapter 5 SIMULATION………………………………..…….38 5.1 System Description…………………………….…………..38 5.2 Simulation………..………………………………..….39 Chapter 6 CONCLUSION……………………………..…….49 6.1 Conclusion.………………………………………………………..49 6.2 Recommendations……………………………….…………..50 References………………………………………………………..….51 List of Figures Figure 2.1 (a) The original color image; (b) the converted gray scale image..……….....….6 Figure 2.2 (a) The input image; (b) the background image; (c) the moving object image after gray-based subtraction with threshold25………...............…...………….7 Figure 2.3 Sobel operation result…….…………………………………………………….10 Figure 2.4 The nine pixels in the image……………………………………………………11 Figure 2.5 The images after morphological operation……………………………………..14 Figure 3.1 Moving object's length and width calculation………………………………….18 Figure 3.2 Noise elimination result..…………………………………………………..........18 Figure 3.3 (a) Define eight directions; (b) the relation of eight directions and the pixel's location…………………………………………………………………….....20 Figure 3.4 (a) An example of contour following; (b) value and point number of contour following……………………………………………………………………..21 Figure 3.5 Summary of contour following………………………………………………….22 Figure 3.6 The contour following result…………………………………………………….22 Figure 3.7 (a) Calculate the contour distance from center point; (b) the contour distance result; (c) the smoothed distance result…………………………..…………..24 Figure 3.8 (a) The Discrete Fourier Transform result; (b) the first normalized 20 DFT data result……………..…………………………………………………........25 Figure 4.1 Structure of the SONFIN………..…………………..……………………….…..29 Figure 4.2 Training by SONFIN…………………………………………………………….36 Figure 4.3 Recognition by SONFIN……………………………………………………..…...36 Figure 5.1 System diagram…………………………………………………………………..39 Figure 5.2 First column: some illustrating pictures of pedestrians; second column: manual contour extraction; third column: automatic contour extraction…………………43 Figure 5.3 First column: some illustrating pictures of cars; second column: manual contour extraction; third column: automatic contour extraction…………………44 Figure 5.4 First column: some illustrating pictures of motorcycles; second column: manual contour extraction; third column: automatic contour extraction…………………45 Figure 5.5 First column: some illustrating pictures of dogs; second column: manual contour extraction; third column: automatic contour extraction…………………46 Figure 5.6 Training error of SONFIN and BP (manual contour extraction)………....……….47 Figure 5.7 Training error of SONFIN and BP (automatic contour extraction)……………….47 Figure 5.8 An example to obtain feature vector by our method………………………………48 List of Tables Table 1 Training and testing results by different networks with contours extracted manually and automatically……………………………………………………….42zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系zh_TW
dc.subjectContouren_US
dc.subject輪廓zh_TW
dc.subjectNeural Fuzzy Networken_US
dc.subjectMoving Objecten_US
dc.subjectRecognitionen_US
dc.subject模糊類神經網路zh_TW
dc.subject移動物體zh_TW
dc.subject辨識zh_TW
dc.title一基於輪廓模糊類神經網路之移動物體辨識系統zh_TW
dc.titleMoving Object Recognition By Contour-Based Neural Fuzzy Networken_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.