Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7928
DC FieldValueLanguage
dc.contributor魏學文zh_TW
dc.contributor桑梓賢zh_TW
dc.contributor.advisor陳後守zh_TW
dc.contributor.author黃暉閔zh_TW
dc.contributor.authorHuang, Huei-Minen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:40:45Z-
dc.date.available2014-06-06T06:40:45Z-
dc.identifierU0005-1107200812053700zh_TW
dc.identifier.citation[1] G. J. Foschini and M.J. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,” Wireless Personal Communications, vol. 6, pp. 311-335, Mar. 1998. [2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov. 1999. [3] S. M. Alamouti, “A Simple Transmitter Diversity Scheme for Wireless Communi- cations,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [4] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block Coding for Wireless Communication: Performance Results,” IEEE J. Select. Areas Commun., vol. 17, pp. 451-460, Mar. 1999. [5] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes.1,” IEEE International Conference on Commun., vol. 2, pp. 1064-1070, Mar. 1993. [6] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. 8, pp. 21-28, Jan. 1962. [7] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981. [8] T. H. Liew and L. Hanzo, “Space-time codes and concatenated channel codes for wireless communications,” Proc. IEEE, vol. 90, pp. 187-219, Feb. 2002. [9] H. FUTAKI and T. OHTSUKI, “space-time transmit diversity schemes with low-density parity-check (LDPC) codes,” IEICE Trans. Commun., vol. E86-B, no. 10, Oct. 2003. [10] G. Zhu, Y. He, G. Liu, B. Zhang, and F. Wang, “Concatenation of space-time block codes and turbo product codes over Rayleigh flat fading channels,” IEEE Vehicular Technology Conference, vol. 2, pp. 1186-1190, May. 2005. [11] Yinggang Du, and K. T. Chan, “Enhanced space-time block coded systems by concatenating turbo product codes,” IEEE Commun. Letters, vol. 8, pp. 388-390, June 2004. [12] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [13] T. Richardson, A. Shokrollahi and R. Urbanke, “Design of capacity approaching irregular codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001. [14] T. Richardson and R. Urbanke, “The capacity of low density parity check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001. [15] IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE, New York, USA. [16] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. [17] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE Tran. TCSI, vol. 52, pp. 766-775, Apr. 2005. [18] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” IEEE International Conference on Commun., vol. 2, pp. 664- 668, Apr.-May 2002.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7928-
dc.description.abstract多重輸入輸出為無線通訊之一大突破,而時空區塊碼再加上傳統的Maximal Ratio Receive Combining(MRRC)即是利用此特性,使傳送端及接收端的天線數皆可增加來達到降低錯誤率的系統。若是再加上錯誤更正碼則可大大提升系統之效能,而錯誤更正碼中又以渦輪碼及低密度查核碼最接近謝農極限。本篇論文首先引進傳統1根天線傳多根天線收之MRRC系統,再敘述時空區塊碼之多根天線傳多根天線收之特性。而對於錯誤更正碼則使用渦輪碼及低密度查核碼,對於渦輪碼採用兩個並聯迴旋碼構成,而解碼方式為BCJR演算法;對於低密度查核碼則採用IEEE 802.16e所訂定之標準,解碼方式為和積演算法。最後將渦輪碼或低密度查核碼與時空區塊碼做結合,並且討論在相同頻寬效益下哪些組合較為優秀。zh_TW
dc.description.abstractThe multi-input-multi-output (MINO) technique is one in the breakthroughs of wireless communications. Space time block code (STBC) with maximal ratio receive combining (MRRC) is one of the systems using MIMO to reduce error rate by increasing the numbers of antennas in transmitter and receiver. The system performance can be greatly improved by applying error correcting coding, such as turbo codes and low density party check (LDPC) codes which are known because of performance approaching their to Shannon limits. In this thesis, we first introduce the traditional MRRC with 1 transmitter antenna and multi receiver antennas. Then we describe the property of STBC with multi transmitter antennas and multi receiver antennas. For error correcting codes, we use turbo codes and LDPC codes. In turbo codes, we use two parallel concatenated convolution codes for encoding and BCJR algorithm for decoding. For LDPC codes, we use IEEE 802.16e standard for encoding and sum-product algorithm for decoding. Finally, we combine turbo codes and LDPC codes with MIMO system and discuss the bandwidth efficiency of these combinations.en_US
dc.description.tableofcontents第一章 前言 1 第二章 時空區塊碼 3 (一)傳統Maximal Ratio Receive Combining (MRRC)系統..........3 (二)Alamouti’s時空區塊碼系統...............................5 (三)Tarokh’s時空區塊碼系統.................................9 (四)時空區塊碼中傳輸能量探討..............................12 (五)時空區塊碼之效能模擬分析..............................13 第三章 渦輪碼(Turbo Code)與低密度查核碼(LDPC Code) 19 (一)渦輪碼原理............................................19 1. 渦輪碼編碼..........................................19 2. 渦輪碼解碼..........................................23 (1) BCJR演算法推導.................................23 (2) 渦輪碼解碼流程.................................28 (3) 渦輪碼解碼實例.................................32 (二)低密度查核碼原理......................................36 1. 低密度查核碼編碼....................................36 2. 低密度查核碼解碼....................................38 (1) 雙邊圖介紹.....................................38 (2) 訊息傳遞演算法介紹.............................39 (3) 和積演算法.....................................41 (4) 和積演算法之對數域.............................45 (5) 低密度查核碼解碼實例...........................47 (6) IEEE 802.16e之低密度查核碼介紹..................49 (三)高速率調變下之解調變..................................52 (四)渦輪碼在可加性高斯白雜訊通道之效能分析................55 (五)低密度查核碼在可加性高斯白雜訊通道之效能分析..........60 第四章 時空區塊碼連結渦輪碼及低密度查核碼 65 (一)時空區塊碼連結通道編碼原理............................65 (二)時空區塊碼連結渦輪碼之效能分析........................66 (三)時空區塊碼連結低密度查核碼之效能分析..................70 第五章 結論 75 參考文獻 76zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1107200812053700en_US
dc.subjectSTBCen_US
dc.subject時空區塊碼zh_TW
dc.subjectTurbo codesen_US
dc.subjectLDPCen_US
dc.subject渦輪碼zh_TW
dc.subject低密度查核碼zh_TW
dc.title時空區塊碼連結渦輪碼及低密度查核碼之效能分析zh_TW
dc.titlePerformance Evaluation of Space-Time Block Codes Concatenated with Turbo Codes and LDPC Codesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.