Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7978
DC FieldValueLanguage
dc.contributor魏學文zh_TW
dc.contributorSyue-Wun Weien_US
dc.contributor林茂昭zh_TW
dc.contributor趙啟超zh_TW
dc.contributorMao-Chao Linen_US
dc.contributorChi-Chao Chaoen_US
dc.contributor.advisor揚谷章zh_TW
dc.contributor.advisorGuu-Chang Tangen_US
dc.contributor.author王泰傑zh_TW
dc.contributor.authorWang, Tai-Chienen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:40:50Z-
dc.date.available2014-06-06T06:40:50Z-
dc.identifierU0005-1308200814020500zh_TW
dc.identifier.citation[1] L.Tančevski and I.Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” J. Llightwave Technol , vol.14, no. 12, pp. 2636-2647, Dec. 1996. [2] G.-C. Yang and W.C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997 [3] G.-C. Yang and W.C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Norwood, MA, 2002 [4] R.M.H Yim, L.R. Chen, and J. Bajcsy, “Design and performance of 2D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol.14, no. 5, pp. 714-716, May 2002. [5] W.C. Kwong, G.-C. Yang, V. Baby, C.-S. Brès, and P.R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutation for ptical CDMA,” IEEE Trans. Commun., vol. 53, no. 1, pp. 117-123, Jan 2005. [6] L. Tančevski and I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.S. P. Wan and Y. Hu, “Two-dimensional optical CDMA differential system with prime/OOC codes,” IEEE Photon. Technol. Lett., vol. 10, no. 12, pp.1373-1375, Dec. 2001. [7] H. Fathallah, L.A. Rusch, and S. Laroschelle, “Passive optical fast frequency- hop CDMA communication system,” J. Lightwave Technol., vol. 17, pp. 397-405, Mar 1999. [8] L. R. Chen, “Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, pp 1233-1235, Nov. 2001. [9] P. C. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63- chip optical code-division multiple- access encoder and decoder based on the superstructured fiber Bragg grating,” J. Lightwave Technol., vol. 19, pp. 1352-1365, Sep. 2001. [10] J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction ,” Lighthwave Technol., vol. 20, pp. 36-46, Jan. 2002. [11] S. Yegnanarayanan, A. S. Bhushan, B. Jalali, “Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, pp. 573-576, May 2000. [12] K. Yu, J. shin, and N. Park, “Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrors fiber delay lines, ” IEEE Photon. Technol. Lett., vol. 12,pp. 1278-1280, Sep. 2000. [13] F.R.K. Chung, J. A. Salehi, and V.K. Wei, “Optical orthogonal codes Design, Analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 594-604, May 1983. [14] G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 96-106, Jan. 1995. [15] G.-C. Yang, “Some new families of optical orthogonal codes for code division multiple-acess fiber-optic network ,” IEEE Proc. Commun.., vol. 42, no. 6, pp. 363-367, Dec. 1995. [16] J.-H. Tien, G-.C. Yang, C.-Y. Chang and W.C. Kwong, “Design and analysis of 2-D code with the maxium cross- correlation value of two for optical CDMA,” to appear in J. Lightwave Technol. [17] J.-J. Chen and G.-C. Yang, “CDMA fiber-optic systems with optical hard limiters,” Lighthwave Technol., vol. 19, no. 7, pp. 950-958, Jul. 2001. [18] J. A. Salehi and C. A. Brackett, “Code division multiple-axess techniques in optical fiber networks-part II: system performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989. [19] M. Azizoglu, J. Sslehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1162-1170, July 1992. [20] H. M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470-2479, July 1994. [21] H. Gibbs, Optical Bistability: Controlling Light with light. New York :Academic, 1985. [22] J. Jwell, M. Rushford, and H. Gibbs, “Use of a single nonlinear Fabry-Perot etalon as optical logic gates,” Appl. Phys. Lett., vol. 44, no.2, pp. 172-174, Jan. 1984. [23] J.-H Wu and J. Wu, “Synchronous fiber-optic CDMA using hard-limiter and BCH codes,” Lighthwave Technol., vol. 13, pp. 1169-1176, June. 1995. [24] C.-C. Hsu and G.-C. Yang, and W.C. Kwong, “Hard-limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun., vol. 56, no. 56, pp. 762-768, May 2008. [25] G.-C. Yang and W.C. Kwong, “Two-dimensional spatial signature patterns,” IEEE Trans. Commun., vol. 44, no. 2, pp. 184-191, Feb. 1996.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7978-
dc.description.abstract近年來由於二維編碼技術的發展,光纖網路技術開始受到新的關注。在本篇論文當中提出了一種新式二維光纖碼,此新二維光纖建立於以最大戶相關數值為二的光纖正交碼為時域展頻碼,此架構能夠提供更多的系統用戶數已致能容納更多同步使用者數且能提供更大的碼重而獲得更好的效能。於本論文最後,此新二維光纖碼與我們之前所提出的二維光纖碼做比較,從分析的結果也顯示出新的二維光纖碼比之前的架構有更好的表現。zh_TW
dc.description.abstractIn this thesis, a new family of wavelength-time codes, which is based on one-dimensional optical orthogonal codes (1D OOCs) of cross-correlation functions of at most two, is proposed. By relaxing the maximum cross-correlation values to two, the new two-dimensional (2D) codes provide larger code cardinality for accommodating more subscribers and support heavier code weight for better code performance. The traditional chip-synchronous assumption used in the analyses of optical codes gives a pessimistic performance upper bound, while the newer chip-asynchronous assumption offers a more accurate performance. The performance of the new 2D codes is here analyzed under both assumptions for comparison. Under certain conditions, our results show that the new wavelength-time codes outperform our recently reported multiple-wavelength OOCs and 2D codes, which were based 1D OOCs of cross-correlation functions of at most one and two, respectively.en_US
dc.description.tableofcontentsChapter 1 Introduction 1 1.1 Background 1 1.2 Fiber-Optic CDMA Communication System 2 1.3 Outline of Thesis 3 Chapter 2 Construction of new 2D codes 5 2.1 Introduction 5 2.2 Basic algorithm 5 2.3 Construction of 2-D Code 7 2.4 Cardinality 8 2.5 Correlation Properties 10 Chapter 3 Performance Analysis 12 3.1 Chip-Synchronous Assumption 12 3.1.1 Hit Probability for Odd Weight 13 3.1.2 Hit Probability for Even Weight 13 3.1.3 Error Probability Derivation 14 3.2 Chip-Asynchronous Assumption 15 3.3 Numerical Examples 16 Chapter 4 4.1 Conclusions 28 4.2 Future Works 28 Appendix I 29 Appendix II 32 References 34en_US
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200814020500en_US
dc.subject波長時間碼zh_TW
dc.subjectwavelength-timeen_US
dc.subject光纖分碼多工zh_TW
dc.subjectO-CDMAen_US
dc.title光纖分碼多工系統之波長時間碼之設計zh_TW
dc.titleA new Family of Wavelength-Time Codes for Fiber-Optic CDMA Systemsen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.