Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/7988
DC FieldValueLanguage
dc.contributor許明華zh_TW
dc.contributor林泓均zh_TW
dc.contributor.advisor張振豪zh_TW
dc.contributor.author林尚賢zh_TW
dc.contributor.authorLin, Sun-Shianen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:40:51Z-
dc.date.available2014-06-06T06:40:51Z-
dc.identifierU0005-1308200816220300zh_TW
dc.identifier.citation[1] EWC HT PHY Specification, Enhanced Wireless Consortium publication,V1.27, 2005. [2] IEEE Std. 802.11a, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5GHz Band, 1999. [3] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, Wiley, 2001. [4] L. C. Godara, Handbook of Antennas inWireless Communications, CRC Press, 2001. [5] J. Heiskala and J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, 2001. [6] J. Medbo and P. Schramm, “Channel models for HIPERLAN/2,” ETSI/BRAN document no. 3ERI085B. [7] IEEE 802 11-03/940r2, TGn Channel Models. [8] R. van Nee, R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000. [9] M. Jankiraman, Space-time codes and MIMO systems, ArtechHouse, 2004. [10] K. Fazel, S. Kaiser, Multi-carrier and Spread Spectrum Systems, John Wiley& Sons, 2003. [11] K. Lee and D. Williams, “ A space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE GLOBECOM, vol. 3, pp. 1473-1477, 2000. [12] Y. Gong and K. B. Letaief, “Space-frequency-time coded OFDM for broadband wireless communications,”in Proc. IEEE GLOBECOM, San Antonio, TX, pp, 519-523, Nov. 2001. [13] C. S. Peng and K. A. Wen “Synchronization for carrier frequency offset in wireless LAN 802.11a system, The 5th International Symposium on Wireless Personal Multimedia Communications, vol. 3,pp. 1083-1087, Oct. 2002. [14] 陳明章,“Design of 802.11a Baseband Transmitter and Synchronization,” 國立交通大學碩士論文, 中華民國九十二年。 [15] 許家禎, “Realization of Synchronization for OFDM-Based Wireless LAN System,” 國立中興大學碩士論文, 中華民國九十四年七月。 [16] 黃章閔, “應用於無線區域網路之正交分頻多工同步電路設計,” 國立中興大學碩士論文,中華民國九十六年七月。 [17] IEEE 802 11-03/814r19, TGn Comparison Criteria. [18] 莊秉卓, “IEEE 802.11n基頻接收機設計與實現,” 國立交通大學碩士論文,中華民國九十四年七月。 [19] 陳炳志, “IEEE 802.11a 無線區域網路之載波回復電路,” 國立中興大學碩士論文,中華民國九十三年六月。 [20] 余其曄, “應用多重輸入輸出正交分頻多工技術之高速無線區域網路基頻收發機設計,” 國立台灣大學碩士論文,中華民國九十三年七月。 [21] 徐智力, “MIMO-OFDM無線區域網路基頻接收端通道估計及相位追蹤硬體架構設計與實現,” 國立中正大學碩士論文,中華民國九十五年七月。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/7988-
dc.description.abstract多重輸入多重輸出正交分頻多工是目前無線通訊中重要的技術之ㄧ。在無線通訊傳輸過程中,訊號在傳送的過程中,會因為通道雜訊等等因素,以至於在接收端的信號頻率會偏掉,所以載波頻率偏移的補償是非常重要的。 我們選定802.11a的基本架構,用來表現出多重輸入多重輸出的傳輸技術原理,目標是將資料傳輸速率做4倍的提升,以提升資料傳輸速率;載波頻率偏移系統架構完成後,在這個基礎上我將其擴展到4×4的多重輸入多重輸出系統,但此時不需利用4套接收複雜的載波頻率偏移系統,就可以完成,我們所採用的是低複雜的載波頻率偏移接收系統,我們利用其中一根天線所接收到的信號,去加以分析補償,所得到分析補償的結果,再傳送給另外3根天線去補償。最後提出模擬結果證明使用低複雜的載波頻率偏移系統,在頻率範圍誤差不大的情況之下,一樣也可以補償回來。最終成功地設計出一組低複雜度的載波頻率偏移系統。zh_TW
dc.description.abstractMultiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is currently one of the important wireless communication. In the transmitting process of wireless communication, there will be signal frequency offset due to channel noise and other factors. Therefore, carrier frequence offset compensation is crucial. The basic architecture of 802.11a is chosen to demonstrate MIMO. Our goal is to enhance 4 times data rate so as to enhance information data rate. After the completion of carrier frequency offset, compensation for SISO system, it will be extended to 44 MIMO systems. It can be accomplished without using 4 sets of complicated CFO systems. We adopt the low complexity synchronization circuit for the receiver. We use the signals of one antenna to analyze its compensation, which will be sent to another three antennas for compensation. Finally, simulation results prove that using low complexity CFO system can be compensation under modest frequency offset circumstances. Finally, a low complexity CFO system is successfully designed.en_US
dc.description.tableofcontents摘要...II Abstract...III 目錄...IV 圖目錄...VI 表目錄...VIII 第一章 緒論...1 1.1 前言 ...1 1.2 研究動機...1 1.3 論文架構...2 第二章 多重輸入多重輸出-正交分頻多工技術...3 2.1 IEEE 802.11n實體層規格概述...3 2.1.1 前置碼...4 2.1.2 保護區間和循環字首...6 2.2 單一輸入單一輸出通道...7 2.2.1 多路徑衰減...9 2.2.2 載波頻率偏移...9 2.2.3 相位雜訊...10 2.2.4 取樣時間偏移...10 2.2.5 時域上的頻率補償邊界...11 2.3 多重輸入多重輸出通道...13 2.4 多重輸入多重輸出系統...14 2.4.1 訊號模型...15 2.4.2 空間多樣性...16 2.5 OFDM技術簡介...17 2.6 MIMO-OFDM系統...22 第三章 接收系統同步估測演算法的推導...23 3.1 接收端同步架構...23 3.2 時域同步估測...24 3.2.1 封包偵測...24 3.2.2 符元邊界偵測...25 3.3 載波頻率偏移估計與回復...28 3.3.1 最大概似頻率偏移估計法...28 3.3.2 載波頻率偏移細估計...30 第四章 接收系統同步低複雜電路之硬體設計...31 4.1 低複雜度同步架構...32 4.2 封包和邊界值偵測...32 4.2.1 封包偵測...33 4.2.2 交相關和峰值檢測...35 4.3 載波頻率估計硬體架構...36 4.3.1 載波頻率偏移粗估計架構...37 4.3.2 數位座標旋轉器...38 4.3.3 sincos疊代架構...42 4.3.4 載波頻率偏移細估計...43 4.4 模擬結果與討論...43 第五章 結果及未來展望...53 參考文獻...54zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200816220300en_US
dc.subjectsynchronizationen_US
dc.subject同步zh_TW
dc.subjectcarrier frequency offseten_US
dc.subjectMIMOen_US
dc.subject載波頻率偏移zh_TW
dc.subject多重輸入多重輸出zh_TW
dc.title應用於多重輸入多重輸出正交分頻多工 之低複雜同步電路設計zh_TW
dc.titleLow Complexity Synchronization Circuit Design for MIMO-OFDM Systemsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.