Please use this identifier to cite or link to this item:
標題: 應用於多輸入多輸出偵測系統之改良型K-Best球型解碼演算法硬體設計與實現
Hardware Design and Implementation of an Improved K-Best Sphere Decoding Algorithm for MIMO Detection Systems
作者: 張宜濡
Chang, I-Ju
關鍵字: MIMO;多輸入多輸出;detection;K-Best SD;偵測;K-Best球型解碼
出版社: 電機工程學系所
引用: [1]A. Alexiou and M. Haardt, “Smart antenna technologies for future wireless systems: trends and challenges,” IEEE Communications Magazine, vol.42, pp.90-97, Sep. 2004. [2]G. L. Stuber, J. R. Barry, S. W. McLaughlin, Ye Li, M.A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM wireless communications,” IEEE Proceedings, vol. 92, pp.271-294, Feb. 2004. [3]T.-D. Chiueh and P.-Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications, Wiley, 2007. [4]B. Vucetic and J. Yuan, Space-Time Coding, Wiley, 2003. [5]D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE Journal on Selected Areas in Communications, vol.21, no.3, April 2003. [6]A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI implementation of MIMO detection using the sphere decoding algorithm,” IEEE Journal of Solid-State Circuits, vol.40, pp.1566-1577, July 2005. [7]D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, K. D. Kammeyer, “Efficient algorithm for decoding layered space-time codes, ” IEE Electronic letters, vol. 37, pp.1348-1350, Oct. 2001. [8]A. Benjebbour, H. Murata, and S. Yoshida, “Comparison of ordered successive receivers for space-time transmission, ” Proc. IEEE VTC’01, USA, Fall 2001. [9]P.W. Wolniansky, G.J. Foschini, G. D. Golden, R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, ”Proceeding of International Symposium on Signals, Systems, and Electronics, pp. 295-300, Oct. 1998. [10]O. Damen, K. Abed-Meraim, S. Burykh, “Iterative QR detection for BLAST, ” Wireless Pers. Commun., vol. 19, pp. 179-192, Dec. 2001. [11]A. Burg, M. Wenk, M. Zellweger, M. Wegmueller, N. Felber and W. Fichtner, “VLSI implementation of the sphere decoding algorithm,” in Proc. ESSCIRC-2004, pp. 303-306, Leuven, Belgium, Sep. 2004. [12]Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun., vol. 24, pp. 491-503, Mar. 2006. [13]J. E. Volder, “The CORDIC trigonometric computing technique, IRE Trans. Electron. Comput., vol. EC-8, pp. 330-334, 1959. [14]莊秉卓, “ IEEE 802.11n基頻接收機設計與實現,” 國立交通大學碩士論文,中華民國九十四年七月。 [15]P. Pirsch, Architecture for Digital Signal Processing ,1998. [16]Y. Kung, VLAI Array Processors, Englewood Cliffs, New Jersey, Prentice Hall, 1998. [17]H. Zhang, H. Zhang, H. Luo, and W. Song, “On low complexity ML detection algorithm in MIMO system,” IEEE 61st Vehicular Technology Conference, vol.1, pp.486-489, June 2005. [18]J. Jalden and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Transactions on Signal Processing, vol.53, pp.1474–1484, April 2005. [19]E. Zimmermann, W. Rave, and G. Fettweis, “On the complexity of the sphere decoding,” Dresden University of Technology, Vodafone Chair Mobile Communications Systems, D-01062 Dresden, Germany. [20]Q. Li and Z. Wang, “An improved K-best sphere decoding architecture for MIMO systems,” Fortieth Asilomar Conference on Signals, Systems and Computers, pp.2190-2194, Oct.-Nov., 2006. [21]Q. Li and Z. Wang, “Improved K-best sphere decoding architecture for MIMO systems,” in Proc. IEEE Int. Symp. Circuit Syst., pp.1159-1162, May 2006. [22]M.O. Damen, A. Chkief, and J. C. Belfiore, “Lattice code decoder for space-time,” IEEE Communication letters, vol.4, pp.161-163, May 2000. [23]H. Lee, H. Jeon, H. Jung and H. Lee, “Signal detection using log-likelihood ratio based sorting QR decomposition for V-BLAST systems, ” IEEE 65th Vehicular Technology Conference, pp. 1881-1885, April 2007. [24]R. Shariat-Yazdi and T. Kwasniewski, “Reconfigurable K-best MIMO detector architecture and FPGA implementation,” International Symposium on Intelligent Signal Processing and Communication Systems, pp.349-352, Nov. 2007. [25]M. D. Ciletti, Advanced Digital Design with the Verilog HDL, Prentice Hall, 2003. [26]EWC HT PHY Specification, Enhanced Wireless Consortium publication, V1.27, 2005.
下世代的無線通訊網路,如IEEE 802.11n的標準規格,主要是由多輸入多輸出系統與正交分頻多工系統所架構而成。正交分頻多工非常適合寬頻傳輸系統,而多輸入多輸出技術主要在傳送與接收端使用多根天線,因此可以增加資料傳輸速度且利用空間處理能增加對空間使用效率。為了達到最佳的最大相似度偵測效能,運算複雜度將會隨著調變群集大小而增加,也隨著傳送天線數目大小而呈指數型增加。球型編碼演算法主要是為了改善ML太過複雜的演算法而產生的,但其仍有變動的複雜度與資料輸出量的不利因素存在。而一般的K-Best球型編碼演算法主要能提供固定的資料輸出量,但其仍有效能衰減的問題存在。一般來說,當K值越大,就越趨近最大相似度的偵測效能,但是也會有高複雜度與大量的功率消耗問題存在著。本論文提出一種改良式的K-Best球型編碼演算法與硬體架構設計,其使用一種具規則性的方式提供不同的偵測層各自的K值。其位元錯誤率較傳統的K-Best球型編碼演算法效能更佳,硬體面積也較小。

The design of the next-generation wireless local area network(WLAN)is based on multiple-input multiple-output(MIMO)and orthogonal frequency-division multiplexing(OFDM), for example in the standard IEEE 802.11n. OFDM is well suited for wideband transmission, and MIMO technology uses multiple transmit and receive antennas to permit several fold increase in achieved data rates and spectral efficiency through spatial processing. In order to achieve optimal maximum likelihood(ML)detection, the computational complexity becomes huge when higher modulation constellations are applied, and it increases exponentially with antenna numbers. The sphere decoding algorithm has been used for Maximum Likelihood detection. However, it suffers from variable computation complexity and variable throughput. Therefore, the conventional K-Best sphere decoding algorithm can guarantee a fixed throughput, but it induces a large bit error rate(BER)degradation. However, to achieve near-ML performances, the K value needs to be sufficiently large, which leads to large computational complexity and power consumption in hardware implementation.In this thesis, we proposed an improved K-Best sphere decoding algorithm and hardware architecture. It uses a regular way to select K value for different detected layers. The proposed method has a better bit error rate and a smaller chip area compared to the conventional K-Best sphere decoding algorithm.
其他識別: U0005-1308200816225300
Appears in Collections:電機工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.