Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8087
DC FieldValueLanguage
dc.contributor陳杏圓zh_TW
dc.contributor陳正倫zh_TW
dc.contributor.advisor蘇武昌zh_TW
dc.contributor.author杜信璋zh_TW
dc.contributor.authorTu, Hsin-Changen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:40:59Z-
dc.date.available2014-06-06T06:40:59Z-
dc.identifierU0005-1607200815353500zh_TW
dc.identifier.citation[1] 林瑞專, “Turn-on angle modulation in servo control of a switched reluctance motor,” Master’s degree thesis, NCHU, July 2001. [2] 邱志強, “A low-cost variable structure minimum-time optimal current controller of a switched reluctance motor, ” Master’s degree thesis, NCHU, July 2005. [3] 林華泰, “Integrated design of controller and drive for a switched reluctance motor”, Mater’s degree thesis, NCHU, June 2003. [4] 鄭仲豪, “Implementation of a current controlled double switched reluctance motor drive using FPGA”, Master’s degree thesis, NCHU, June 2006. [5] 柯呈達, “Sensorless Position Estimate for Switched Reluctance Motor with A Unipolar Converter Drive.”, Master’s degree thesis, NCHU, June 2007. [6] 董勝源, “DSP TMS320LF2407 與C語言控制實習”, 長高出版社, 2004.R. M. [7] Davis, “Variable reluctance rotor structures-their influence on torque production,” IEEE Trans. Ind. Electron., vol. 39, no. 2, pp. 168-174, Apr. 1992. [8] H. C. Lovatt and J. M. Stephenson, “Influence of number of poles per phase in switched reluctance motors,” IEE Proc. Electr. Power Appl., vol. 139, no. 4, pp. 307-314, July 1992. [9] R. Robinovici, “Scaling of switched reluctance motors,” IEE Proc. Electr. Power Appl., vol. 142, no 1, pp.1-4, Jan. 1995. [10] B. C. Mecrow, “New winding configurations for doubly salient reluctance machines,” IEEE Trans. Ind. Appl., vol. 32, no. 6, pp. 1348-1356, Nov./Dec. 1996. [11] A. C. Clothier and B. C. Mecrow, “Inverter topologies and current sensing methods for short pitched and fully pitched winding SR motors,” Darnell Group Inc. 2000. Applied Power Electronics Conference and Exposition, 1999. APEC ''99. Fourteenth Annual, vol. 1, 14-18 March 1999, pp. 416 – 423. [12] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 26, no. 2, pp. 222-228, March/Apr., 1990. [13] M. Ehsain, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 224-230, Apr. 1993. [14] R. Krishnan and P. N. Materu, “Design of a single-switched-per-phase converter for switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 469-476, Dec. 1990. [15] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boosting,” IEE Proc. Power Appl., vol. 140, no. 5, pp. 316-322, Sept. 1993. [16] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient c-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, Sept. 1997. [17] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” IEEE Trans. Power Electron., vol. 11, no. 9, pp. 68-75, Oct. 1996. [18] I. Husian, “Minimization of torque ripple in SRM drives,” IEEE Trans. Ind. Electron., vol.49, no. 1, pp. 28-39, Feb. 2002. [19] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearisation approach,” IEE Proc. Power Appl., vol. 143, no. 5, pp. 371-379, Sept. 1996. [20] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” IEEE Proc. IECON’97, vol. 3, pp. 989-994, Nov. 1997. [21] M. Ehsani and K. R. Ramani, “Direct control strategies based on sensing inductance in switched reluctance motors,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 74-82, Jan. 1996. [22] S. K. Sahoo, S. K. Panda, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, Jan. 2005. [23] C. C. Chan, Y. J. Zhan, K. T. Chau, “Stability analysis of fuzzy sliding mode controlled switched reluctance motor drives,” Power Electron. Special. Conf., vol. 2, 17-22 May 1998, pp. 1283-1289. [24] H. Huovila and O. Karasti, “A sensorless SR motor position measurement method,” Machine Automat., VTT Automat., Finland, 2003. [25] F. R. Salmasi, B. Fahimi, H. Gao, and M. Ehsani, “Robust sensorless rotor position detection in switched reluctance motors for low speed applications,” IEEE Trans. Power Electron., vol. 16, no. 8, pp. 839-843, June 2001. [26] J. P. Lyons, S. R. MacMinn, and M. A. Preston, “Flux/Current Methods For SRM Rotor Position Estimation”, Industry Application Society Annual Meeting, Conference Record of the 1991 IEEE, vol1. 1, pp. 482-487, 1991. [27] J. E. Slotine and Weiping Li, Applied Nonlinear Control, New Jersey: Prentice Hall, 1991. [28] G. S. Buja, R. Menis, and M. I. Valla, “Variable structure control of an SRM drive,” IEEE Trans. Ind. Electron., vol. 40,no. 1, pp 56-63, Feb. 1993. [29] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov./Dec. 1991. [30] M. S. Arefeen, “Implementation of a Current Controlled Switched Reluctance Motor Drive Using TMS320F240”, Application Report: SPRA282, Texas Instruments, Sep. 1998.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8087-
dc.description.abstract本文主旨在於利用無感測器電感估測方法完全取代光學編碼器來驅動四相的可變磁阻馬達。我們在對稱性雙順向式換流器中安裝兩個電流感測器,利用電流建立馬達磁交鏈的動態,進而計算得知電感值,並且用來估測出馬達的位置。然而在取得系統的參數上,我們使用DSP來計算電感的演算法。並且計算出足夠的電感資訊來達到驅動目的。最後經由模擬數據以及實驗結果的資料證實此理論的可行性。zh_TW
dc.description.abstractThe purpose of this thesis is to develop a sensorless positioning method for a four-phase switched reluctance motor so as to fully replace the optical encoder in the driving mechanism. We install two current sensors in the dual-forward converter. By substituting the current information into the flux linkage dynamics, we obtain the instantaneous inductance value, so that the rotor position can be virtually estimated. We use a digital signal processor for computing the system parameters, which are then fed into the inductance computing algorithm. It is found that the inductance information alone is sufficient for driving purpose. The idea is confirmed by computer simulations as well as experimental data.en_US
dc.description.tableofcontentsAcknowledgement ii Chinese Abstract iii English Abstract iv Contents v List of Figures vii List of Tables ix Notations x Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Goal of Thesis 5 1.4 Organization of the Thesis 5 Chapter 2: System Dynamic of A Switches Reluctance Motor 6 2.1 Structure of A Switched Reluctance Motor 6 2.2 Machine Topologies and Principle Rotated 8 2.3 Linearized Inductance of Each Phase 12 2.4 Dynamic Model of A SRM 14 Chapter 3: Design of Drive Circuit 19 3.1 Drive Topology of SRM 19 3.2 Optical Encoder 25 Chapter 4: The System of Sensorless Position Estimate 27 4.1 Description for Sensorless System 27 4.2 The Method of Sensorless Inductance Estimate 28 4.3 Simulations 33 Chapter 5: System Integration and Implementation 39 5.1 System Architecture 39 5.2 Digital Signal Processor 40 5.3 Experimental Result 41 Chapter 6: Conclusion 46 6.1 Conclusion 46 6.2 Future Work 46 Reference 47en_US
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200815353500en_US
dc.subject磁阻馬達zh_TW
dc.subjectsrmen_US
dc.subject四相zh_TW
dc.subject無感測zh_TW
dc.subjectsensorlessen_US
dc.title以電感估測實現切換式磁阻馬達之無感測驅動zh_TW
dc.titleA Sensorless Drive with Inductance Estimation for Switched Reluctance Motorsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.