Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorChing-Yuan Yangen_US
dc.contributor.authorLin, Gung-Yuen_US
dc.identifier.citation[1] J. S. Wang, P. H. Yang, and D. Sheng, “Design of a 3-V 300-MHz low-power 8-b x 8-b pipelined multiplier using pulse-triggered TSPC flip-flop”, IEEE J. Solid-State Circuits, vol. 35, pp. 583-592, Apr. 2000. [2] S. Kozu, M. Daito, Y. Sugiyama, H. Suzuki, H. Morita, M. Nomura, K. Nadehara, S. Ishibuchi, M. Tokuda, Y. Inoue, T. Nakayama, H. Harigai, and Y. Yano, “100MHz, 0.4 W RISC processor with 200MHz multiply adder, using pulse-register technique”, in ISSCC Digest of Technical Papers 1996, pp. 140-141. [3] Y. J. Jung, S. W. Lee, D.Shim, W. Kim, C. Kim andS. I. Cho, “ A dual-loop delay-locked loop using multiple voltage-controlled delay lines”, IEEE J. Solid-State Circuits, vol.36, pp.784-791, May 2001. [4] J. J. Nam and H. J. Park, “An all-digital CMOS duty cycle corrector circuit with a duty-cucle correction range of 15-to-85% for multi-phase applications ”, IEICE Trans. Electron, vol. 88, pp. 773-777, April. 2005 [5] K. H. Kim, G. H. Cho, J. B. Lee, and S. I. Cho, “Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM application”, in Digest of Technical Papers, Symposium on VLSI circuits, pp. 287-288, June 2003 [6] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffer,” IEEE J. Solid-Stale Circuit, vol. 35,pp. 134-141, Feb. 2000. [7] P. H. Yang and I. S. Wang, “Low-voltage pulsewidth control loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 1348-1351, Oct. 2002. [8] W.-M. Lin, H.-Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE SOCC, no. 427, pp. 301-304, Sept. 2003. [9] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003. [10] F. M. Gardner, “Charge-pump phase-lock loop,” IEEE Trans. Comm., vol. COM-28, pp. 1849-1858, Nov. 1980. [11] M. V. Paemel, “Analysis of a charge-pump PLL: a new model,” IEEE Trans. Comm., vol. 42, no. 7, pp. 2490-2498, July 1994. [12] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2000. [13] F. Gardner, “Charge-Pump Phase-Lock Loops”, IEEE Trans. Communications, Vol. 28, pp. 1849-1858, Nov. 1980. [14] M. Van Paemel, “Analysis of a charge-pump PLL: a new model”, IEEE Trans Communications, Vol.42, pp.2490-2498, July 1994. [15] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector”, IEEE J. Of Solid-State Circuits, Vol. 25, No.8, pp. 1019-1022, Aug. 1990. [16] H. O. Johansson, “A simple precharged CMOS phase frequency detector”, IEEE J. Of Solid-State Circuits, Vol. 33, No. 2, pp. 295-299, Feb. 1998. [17] M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops”, IEEE J. Of Solid-State Circuits, Vol. 37, No.10, pp. 1331-1334, Oct. 2002 [18] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications”, Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998. [19] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. [20] J. W. Lin, “Design and realization of analog delay-locked loops,” M.S. Thesis, National Taiwan University, June 2001. [21] P. J. Huang, “Analysis and design of a multiphase-output delay-locked loop,” M.S. Thesis, National Chung-Hsing University, July 2004. [22] M. G. Johnson, et al., “A variable delay line PLL for CPU coprocessor synchronization,” IEEE J. Solid-State Circuits, vol. 23, no. 5, pp. 1218-1223, Oct 1988. [23] Http:// [24] G.. Chien, “Low-noise local oscillator design techniques using a DLL-based frequency multiplier for wireless applications,” Ph.D. Dissertation, California University, Berkeley, Spring 2000. [25] J. W. Chen, “A Tracking Data Recovery System for Inter-Chip Signaling”, MS Thesis, Dpt. of Electrical Engineering, National Taiwan University, June 2000. [26] R. Farjad-Rad, “A CMOS 4-PAM Multi-Gbps Serial Link Transceiver”, Ph.D. Thesis, Stanford University, 2000. [27] M. S. Yu, “Design and Application of a 1.25Gb/s Clock and Data Recovery Circuit”, MS Thesis, Dpt. of Electrical Engineering, National Taiwan University, June 2002. [28] S.H.-L. Tu, “Design and Implementation of Differential Pulsewidth Control Loop for GHz VLSI Systems,” Electronics Letters, 18th Aug. 2005, vol. 41, no. 17. [29] Fenghao Mu; Svensson, C,” Pulsewidth control loop in high-speed CMOS clock buffers” Solid-State Circuits, IEEE Journal of Volume 35, Issue 2, Feb. 2000 Page(s):134 - 141 [30] T. Ogawa and K. Taniguchi, “A 50% Duty-Cycle Correction Circuit for PLL Output,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 4, 2002, pp. 21-24. [31] Hong-Yi Huang, Wei-Ming Chiu and Wei-Ming Lin, “Pulsewidth Control Loop Circuit Using Combined Charge Pumps and Miller Scheme,” in Proc. IEEE International Conference on Solid-State and Integrated Circuits Technology, Oct. 2004, pp.1539 - 1542. [32] Po-Hui Yang and Jinn-Shyan Wang, “Low-Voltage Pulsewidth Control Loop for SOC Applications,” IEEE J. Solid-State Circuits, vol.37, Oct. 2002, pp.1348-1351. [33] B. Razzavi, “Design of Analog CMOS Integrated Circuits,” New York: McGraw-Hill, 2001. [34] D. Johns and K. Martin, “Analog Integrated Circuit Design,” New York: Wiley, 1997. [35] Steve Hung-Lung Tu, “A Differential Pulsewidth Control Loop for High-Speed VLSI Systems,” IEEE Transactions On Circuits And Systems—II: Express Briefs, vol. 53, no. 5, May 2006, pp. 417-421. [36] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 134-141, Feb. 2000. [37] M. Fenghao and C. Svensson, “Pulsewidth Control Loop in High-Speed CMOS Clock Buffers,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 134-141, Feb. 2000. [38] Jinn-Shyan Wang and Po-Hui Yang, “Low-Voltage CMOS Pulsewidth Control Loop Using Push-Pull Charge Pump,” Electronics Letters, vol.37, Mar. 2001, pp. 409-411. [39] Wang, J.S.; Yang, P.H.;'' Low-voltage CMOS pulsewidth control loop using push-pull charge pump''Electronics Letters Volume 37, Issue 7, 29 March 2001 Page(s):409 - 411 [40] W.-M. Lin and H.-Y. Huang, “A low-jitter mutual-correlated pulsewidth control loop circuit,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1366-1369, Aug. 2004. [41] Sung-Rung Han, and Shen-Iuan Liu, “A 500-MHz-1.25-GHz Fast-Locking Pulsewidth Control Loop With Presettable Duty Cycle,” IEEE J. Solid-State Circuits, vol. 39, no. 3, Mar. 2004, pp. 463-468. [42] Sung-Rung Han and Shen-Iuan Liu, “A Single-Path Pulsewidth Control Loop With a Built-In Delay-Locked Loop,” IEEE J. Solid-State Circuits, vol. 40, no. 5, May 2005, pp. 1130-1135. [43] Kuo-Hsing Cheng, Chia-Wei Su, Chen-Lung Wu and Yu-Lung Lo, “A Phase-Locked Pulsewidth Control Loop with Programmable Duty Cycle,” 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits (AP-ASIC2004) I, Aug. 4-5, 2004, pp. 84-87. [44] S.-R. Han and S.-I. Liu, “A single-path pulsewidth control loop with a built-in delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1130-1135, May 2005. [45] Y.-J. Wang, S.-K. Kao, and S.-I. Liu, “All-digital delay-locked loop/ pulsewidth-control loop with adjustable duty cycles,” IEEE J. Solid- State Circuits, vol. 41, no. 6, pp. 1262-1274, Jun. 2006. [46] Kuo-Hsing Cheng; Chia-Wei Su; Kai-Fei Chang;'' A High Linearity, Fast-Locking Pulsewidth Control Loop With Digitally Programmable Duty Cycle Correction for Wide Range Operation'' Solid-State Circuits, IEEE Journal of Volume 43, Issue 2, Feb. 2008 Page(s):399 - 413zh_TW
dc.description.abstract近年來,大多數的數位與混合訊號電路中會大量的使用時脈訊號(clock)來控制電路,然而在高頻操作下,時脈訊號的頻率(frequency)、相位(phase)以及脈波寬度比例(duty-cycle)等特性之精準度十分重要。因此針對相位與頻率的校正上已發展出鎖相迴路(PLL)與延遲鎖定迴路(DLL)等相當成熟的技術,首先我們針對近年來應用於脈波寬度控制迴路的電路設計進行分析探討,並分析各種方法的優點與所面臨的挑戰,本論文著重於有可變的工作週期脈波寬度(duty-cycle)的控制部份,我們將提出不同於傳統的PWCL一個嶄新的架構,為可程式化時脈週期產生器,除了能提供50% duty cycle的校正之外,並發展其他duty-cycle的時脈輸出訊號,此電路利用二階的三角積分器來產生更多的工作週期,能由外部的數位訊號控制到7bits的解析度,因此此電路擁有更多的duty-cycle時脈輸出的選擇。本論文模擬設計於TSMC公司下線製造,我們用0.18μm CMOS 製程參數設計且操作電壓為1.8V 時,整合電路可操作在500MHz~800MHz 之間。電路中將脈波寬度及相位皆完成鎖定。經過SPICE 模擬,迴路在600MHz 的頻率下,可校正輸入訊號為10%~90%,將相位及脈波寬度皆鎖定後,輸出時脈訊號可在25%~75% 的duty-cycle之間做調整,且每次調整為0.78%,消耗的功率約為60mW,脈波寬度抖動(pulse-width jitter)約為8.6ps。zh_TW
dc.description.abstractRecently, Most digital and mixed-signal circuits use a lot of clock signals to control a periodic notification at the requested time. The accuracies on frequencies, phases and pulse widths duty-cycle of clock signals are very important for high speed applications. It had mature advanced a phase locked loop (PLL) and a delay locked loop (DLL) technologies have achieved good results in recent years. First, we analysis and treat in connection with the pulse-width control loop(PWCL) applications and architectonics recently, and analysis the advantage of different ways and which challenge we to face. The thesis will emphasize the control of the variable duty-cycle. Different from the conventional DCC and PWCL, A new programmable duty-cycle generator (PDCG) with variable duty cycle of output clock and synchronization of the input clock and output clock is proposed. Since the conventional pulse-width control circuits can adjust duty cycle but can’t synchronize the input and output clocks, the proposed PDCG uses a 2nd-order Δ-Σ modulator to produce more several kinds of duty-cycle selection of clock signals with a 7-bit resolution. Simulated in a 0.18um CMOS technology, the proposed PDCG can operate from 500MHz to 800MHz and the duty-cycle range of input clock can be operated from 10% to 90%. Moreover, the duty cycle of the output clock can be adjusted from 25% to 75% in a fine step of 0.78%. The power dissipation is 60 mW. The pulse-width jitter is 8.6ps。zh_TW
dc.description.tableofcontents誌謝-------------------------------------------------- 摘要(英文)---------------------------------------------i 摘要(中文)-------------------------------------------- -ii 目錄-------------------------------------------------iii 第一章 緒論 1.1 研究動機------------------------------------------1 1.2 論文概要------------------------------------------2 第二章 鎖相迴路與延遲鎖定迴路 2.1 鎖相迴路----------------------------------------- 3 2.1.1 相位頻率偵測器----------------------------------4 2.1.2 電荷幫浦與迴路濾波器------------- ---------------6 2.1.3 電壓控制振盪器-------------------------------7 2.2 延遲鎖定迴路--------------------------------------9 2.2.1 電壓控制延遲線------------------------------- 10 2.3 鎖相迴路與延遲鎖定迴路之設計考量與比較------------- 11 2.3.1 設計上的考量----------------------------- 11 2.3.2 鎖相迴路與延遲鎖定迴路之比較------------------ -15 2.4 眼圖-------------------------------------17 第三章 時脈脈波寬度迴路之研究 3.1 傳統型PWCL之架構--------------------------------20 3.1.1 傳統型PWCL之組成電路-------------------------21 3.1.2 控制級電路------------------------------- 21 3.1.3 電荷幫浦-------------------------------23 3.1.4 放大器-------------------------------24 3.2 傳統型PWCL之各類介紹----------------------25 3.3 可調式PWCL之各類介紹---------------------------27 3.4 分析與結論----------------------------------- 29 第四章 三角積分脈波寬度調變之可程式化時脈寬度產生器之實現 4.1 簡介--------------------------------------------31 4.2 電路架構與說明-----------------------------------31 4.2.1 時脈週期寬度控制電路-------------------------- 33 4.2.2 三角積分調變器之應用----------------------40 4.2.3 雙迴路延遲鎖定迴路-----------------------------42 4.3 電路模擬---------------------------------45 4.4 晶片量測-----------------------------------53 4.4.1 量測裝置-----------------------------54 第五章 結論 5.1 結論與未來展望-----------------------------------56 參考書目 參考文獻----------------------------------------------57zh_TW
dc.subjectpulse width modulationen_US
dc.subjectclock generatoren_US
dc.titleA Programmable Duty Cycle Generator Based on a Delta-Sigma PWM Mechanismen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.