Please use this identifier to cite or link to this item:
標題: 海水熱帶魚鰓上氯離子排除模式之探討
Studies on the model of Cl- excretion in gills of tropical marine teleosts
作者: 林資宸
Lin, Tzu-Chen
關鍵字: 鰓;gill;離子調節細胞;鈉鉀幫浦;鈉鉀二氯共運輸蛋白;海水熱帶魚;ionocyte;NKA;NKCC;tropical marine teleosts
出版社: 生命科學院碩士在職專班
引用: 參考文獻 宋文汀,2000。鱸形目魚類富含粒線體細胞的分布與鰓部分功之關係。私立東海大學生物系研究所碩士論文。 林浩然,2011。魚類生理學。中山大學出版社。廣州。 Ando, M., Utida, S., 1986. Effects of diuretics on sodium, potassium, chloride and water transport eel intestine. Zool. Sci. 3:605-612. Avella, M., Berhaut, J.,. Bornancin, M., 1993. Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium. J. Fish Biol. 42:243-254. Blanco, G., DeTomaso, A.W., Koster, J., Xie, Z. J., Mercer, R.W., 1994. The α-subunit of the Na+,K+ -ATPase has catalytic activity independent of the β-subunit. J. Biol. Chem. 269:23420-23425. Blanco, G., Koster, J.C., Sanchez, G., Mercer, R.W., 1995.. Kinetic properties of the α2β1 and α2β2 isozymes of the Na+, K+ -ATPase Biochem. 34:319-325. Blanco, G., Mercer,R.W., 1998. Isozymes of the Na+,K+-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275:F633–F650. Brian, A., Sardella, D.K., 2009. Osmo- and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity acclimation. J Comp Physiol B 179:383-390. Catherine L.N., Viviane, B., Charlotte, B., Guy, C., 2006. The Na+,K+,2Cl¯−cotransporter of rin the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. Journal of glExperimental Biology. 209:4908-922. Chow, D. C., Forte, J.G., 1995. Functional significance of the β-subunit for heterodimeric P-type ATPases. J. Exp. Biol. 198:1-17. Christian K. Tipsmarka , J., Adam, L., Steffen, S., Madsen, P. K., Russell J. B., 2008. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of Southern Flounder (Paralichthys lethostigma). Comparative Biochemistry and Physiology. Part A 150: 265-273. Christensen, A.K., Hiroi, J., Schultz, E.T., McCormick, S.D., 2012. Branchial ionocyte organization and ion-transport protein expression in juvenile alewives acclimated to freshwater or seawater Journal of Experimental Biology. 215:642–652. Cutler, C.P. Cramb, G., 2002. Two isoforms of the Na +/K +/Cl-cotransport are expressed in the European eel (Anguilla anguilla). Biochim. Biophys.Acta, Biomembr. 1566:92-103. Dang, Z.C., Lock, R.A.C., Flik, G.W., Bonga, S.E., 2000. Na +,K + -ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to copper. J. Exp. Biol. 203:379-387. Dang Z.C, Balm, P.H., Flik ,G.W., Bonga, S,E., Lock, R.AC. 2000. Cortisol increases Na+,K+-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus. J Exp Biol. 203:2349-2355 Eakle, K.A., Lyu, R.M., Farley, R.A., 1995. The influence of β-subunit structure on the interaction of Na+,K+ -ATPase complexes with Na+. A chimeric β subunit reduces the Na+ dependence of phosphoenzyme formation from ATP. J. Biol. Chem. 270. Epstein, F.H., Silva, P., Kormanik, G., 1980. Role of Na,K-ATPase in chloride cell function. Am. J. Physiol. 238:R246-250. Evans, D.H., 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. 295:R704-R713. Evans, D.H., Poermarini, P.M., Potts, W.T.W., 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283:641-652. Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill:dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85:97-177. Flatman, P.W., 2002. Regulation of Na–K–2Cl cotransport by phosphorylation and protein–protein interactions. Biochim. Biophys. Acta, Biomembr. 1566:140-151. Gagnon, E.B., Forbush, A.W.,. Flemmer, I., Gimenez, L., Caron and Isenring, P., 2002. Functional and molecular characterization of the shark renal Na–K–Cl cotransporter: novel aspects. Am. J. Physiol. 283:R1046-R1055. Hirai, N., Tagawa, M., Kaneko, T., Seikai, T. and Tanaka, M., 1999. Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus. Zool. Sci. 16:43-49. Hiroi, J. and S. D. McCormick., 2007. Variation in salinity tolerance, gill Na+,K+ -ATPase, Na+,K+,Cl-cotransport and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J. Exp. Biol. 210:1015-1024. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P., Kaneko,T., 2008. Evidence for an apical Na+,Cl− cotransporter involved in ion uptake in a teleost fish J. Exp. Biol. 211:2584-2599. Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp Biochem Physiol B. 136:593–620. Hootman, S.R., Philpott, C.W., 1979. Ultracytochemical localization of Na+,K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat. Rec. 193:99-129. Huang, C.Y., Chao, P.L.; Lin, H.C., 2010. Na+,K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation. Hwang, P.P., Lee., T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol A. 148:479-497. Hwang,P.P., Lee,T.H. Lin, L.Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms Am. J. Physiol. 301:R28-R47. Inokuchi, M., Hiroi, J.S., Watanabe, K.M.,. Lee, T.K., 2008. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities Comp. Biochem. Physiol. A. 151:151–158. Jaisser, F., Horisberger, J.D., Rossier, B.C., 1992. The β subunit modulates potassium activation of the Na-K pump. Ann. NY Acad. Sci. 671:113-119. Jobling, M., 1995. Environmental biology of fishes. 211-249. Jurss, K., Bastrop, R., 1995. The function of mitochondria-rich cells (chloride cells) in teleost gills. Rev. Fish Biol. Fish. 5:235–255. Kaneko T, Watanabe S., Lee, K.M., 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua-Biosci Monogr (ABSM) 1:1-62. Kang, C.K., Tsai, S.C., Lee, T.H., Hwang, P.P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinitytolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. A. 148:479–497. Kang, C.K., Tsai, H.J., Liu, C.C., Lee, T.H., Hwang, P.P., 2010. Salinity-dependent expression of a Na+/K+ 2Cl-cotransporter in gills of the brackish medaka Oryzias dancena: a molecular correlate for hyposmoregulatory endurance. Comp. Biochem. Physiol. A 157:7-18. Kang, C.K., Liu, F.C., Chang,W.B., Lee ,T.H., Effects of low environmental salinity on the cellular profiles and expression of Na+, K+-ATPase and Na+, K+, 2Cl− cotransporter 1 of branchial mitochondrion-rich cells in the juvenile marine fish Monodactylus argenteus Fish Physiology and Biochemistry. 38:665–678. Karnaky, K.J., 1998. Osmotic and ionic regulation. In The physiology of fishes (ed. D.H. Evans). 157-176. Katoh, F., Cozzi, R., Marshall, W.; Goss., 2008. Distinct Na+/K+/2Cl-cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell and tissue research Volume: 334 Issue: 2 Pages: 265-281. Katoh, F., Shimizu A., Uchida, K., Kaneko, T., 2000. Shift of chloride cell distribution during early life stages in seawater-adapted killifish, Fundulus heteroclitus. Zool. Sci. 17:11-18. Keys, A.B., Willmer, E.N., 1932 . “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. London. 76:368-378. Kelly A.H., David, H.E., 2009. Short-Term Low-Salinity Tolerance by the Longhorn Sculpin, Myoxocephalus octodecimspinosus. Journal of Experimental Zoological 311A:45–56. Laurent, P., 1984. Gill internal morphology. In”Fish physiology Vol. XA.”(Hoar, W. S. and D. J. Randall, eds.) pp. 73-184. Laurent, P., Dunel, S., 1980. Morphology of gill epithelia in fish. Am. J. Physiol. 238:147-R159. Laurent, P. , Perry, S.F., 1991. Environmental effects on gill morphology. Physiol. Zool. 64:4-25. Laurent, P., Perry, S., 1990. The effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res. 259: 429-442. Lee, T.H., Hwang, P.P., Feng, S.H., 1996a. Morphological studies of gill and mitochondria-rich cells in the stenohaline cyprinid teleosts, Cyprinus carpio and Carassius auratus, adapted to various hypotonic environments. Zool. Stud. 35: 272-278. Lee, T.H., Hwang, P.P., Feng, S.H., Huang, F.L.,1996b. The gill structure and branchial mitochondria-rich cells of the medaka, Oryzias latipes. Acta. Zool. Taiwan. 7:43-50. Lee, T.H., Lin, H.C., Yu, M.J., Huang, F.L., Hwang P.P., 1995. Mitochondria-rich cells in gills of the euryhaline teleost, Oreochromis mossambicus. Zool. Stud. 34 :239-240. Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20:29-36. Liedtke, C.M., Cole, T.S., 2002. Activation of NKCC1 by hyperosmotic stress in human tracheal epithelial cells involves PKC-delta and ERK. Biochim.Biophys. Acta, Mol. Cell Res. 1589:77-88. Lingrel, J.B., 1992. Na,K-ATPase:Isoform structure, function, and expression. J. Bioenerg. Biochember. 24:263-270. Lingre, J.B., Kuntzweiler, J., 1994 Na+, K+ -ATPase. J. Biol. Chem. 269:19659-19662. Lin, H.C., Sung, W.T., 2003. The distribution of mitochondriarich cells in the gills of air-breathing fishes. Physiol Biochem Zool. 76:215-228. Linnaeus, C., 1758. Systema naturae per regna tria naturae, secundum classes, ordinus, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Impensis Direct. Laurentii Salvii, Holmiae. 824 p. Lorin-Nebel, C., Boulo, V., Bodinier, C., Charmantier, G., 2006. The Na+/K+/2Cl− cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation Journal of Experimental Biology. 209:4908-4922. Lytle, C., Xu, J.C., Biemesderfer, D., Forbush, B., 1995. Distribution and diversity of Na+,K +,Cl-cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol. 269:C1496-C1505. Marshall, W.S., 2002. Na+,Cl-,Ca 2+ and Zn 2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293:264-283. Marshall, W.S., 2003. Rapid regulation of NaCl secretion by estuarine teleost fish: coping strategies for short-duration freshwater exposures. Biochim. Biophys. Acta, Biomembr. 1618:95-105. Marshall, W.S., Bryson, S.E., 1998. Transrpot mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comp. Biochem. Physiol. 119A:97-106. Marshall, W.S., Bryson, S.E., Midelfart, A., Hamilton, W.F., 1995. Low conductance anion channel activated by cyclic AMP in teleost Cl- secreting cells. Am. J. Physiol. 268:R963-R969. Marshall, W.S., 2011. Marshall Mechanosensitive signalling in fish gill and other ion transporting epithelia Acta Physiologica. 202:487-499. Marvao, P., Emilio, M.G., Ferreira, K.G., Fernandes, P.L., Ferreira, H.G., 1994. Ion-transport in the intestine of Anguilla anguilla -gradients and translocators. J. Exp. Biol. 193:97-117. McCormick, S.D., 1990. Fluorescent labeling of Na,K-ATPase in intact cells by use of a fluorescent derivative of ouabain:salinity and teleost chloride. Cell. Tiss. Res. 260:529-533. McCormick, S.D., 2001. Endocrine control of osmoregulation in teleost fish. Am. Zool. 41:781-794. McCormick, S.D., Sundell, K., Bjornsson, B.T., Brown, C.L.,. Hiroi, J., 2003. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl− cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis) Journal of Experimental Biology, 206:4575-4583. McDonough, A.A., Geering, K., Farley, R.A., 1990. The sodium pump needs its beta subunit. FASEB J. 4:1598-1605. Mercer, R.W., 1993. Structure of the Na+, K + -ATPase Int. Rev. Cytol. 137:139-168. Mizumo, S., Ura, K., Okubo, T., Chida, Y., Misaka, N., Adachi, S., Yamauchi, K., 2000. Ultrastructural changes in gill chloride cells during smoltification in wild and hatchery-reared masu salmon Oncorhynchus masou. Fish. Sci 66:670-677. Ouattara, N.G., Bodinier,,C., Genevieve, N.S., Helena, D.C., Samir, M., Guy, C., Panfili, J., Baroillera, J.F., 2009. Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquaculture. 290:155-164. Payne, J.A., Xu, J.C. Haas, M., Lytle, C.Y.D., Ward, B.F., 1995. Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na +/K +/Cl-cotransport in human colon. J. Biol. Chem. 270:17977-17985. Pelis, R.M., Zydlewski, J., McCormick, S.D., 2001. Gill Na+,K+,2Cl¯cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am J Physiol Regulatory Integrative Comp Physiol. 280: R1844-R1852. Perry, S.F., 1997. The chloride cell: structure and function in the gills of freshwater fishes. Ann. Rev. Physiol. 59:325-347. Perry, S.F., 1998. Relationships between branchial chloride cells and gas transfer in freshwater fish J. Exp. Biol. 119:9-16. Perry, S.F., Goss, G.G., Laurent, P., 1992a. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can. J. Zool. 70:1775-1786. Perry, S. F., Goss, G.G., Fenwick., J.C., 1992b. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish Physiol. Biochem. 10: 327-337. Perry, S.F., Laurent, P., 1993. Environmental effects on fish gill structure and function. In Fish Ecophysiology. 231-263. Pressley, T.A., 1996. Structure and function of the Na-K pump: ten years of molecular biology. Miner. Electrolyte Metab. 22: 264-271. Prodocimo, V.; Veiga, M.P.T., Souza, C.F., Pessini, C.; Fernandes, L.C.; Freire, C.A., 2007. 27.P1. Metabolic substrates in osmoregulatory organs and short-term salinity reduction in the estuarine pufferfishes Sphoeroides testudineus and S. greeleyi.Comparative Biochemistry And Physiology A-Molecular & Integrative Physiology Volume: 148 Supplement: 1 Pages: S121-S121. Sakamoto, T., Uchida, K., Yokota, S., 2001b. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleosts fishes to different salinities. Zool. Sci. 18:1163-1174. Sakamoto, T., Uchida, K., Yokota, S., 2001. Regulation of the ion-transporting mitochondria-rich cell during adaptation of teleost to different salinities. Zool. Sci.18:1163-1174. Sasai, S., Kaneko, T., Hasegawa, S., Tsukamoto, K., 1998. Morphological alteration in two types of gill chloride cells in Japanese eel (Anguilla japonica) during catadromous migration. Can. J. Zool. 76:1480-1487. Schreiber, A.M., Specker, J.L., 2000. Metamorphosis in the summer flounder, Paralichthys dentatus:thyroidal status influences gill mitochondria-rich cells. Gen. Comp. Endocrinol. 117:238-250. Scott, G.R., Richards, J.G., Forbush, B., Isenring, P., Schulte ,P.M., 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. 287:C300-C309. Shao, K.T (Eds.)., 2009. Taiwan fish database. WWW Web electronic publication., version. Sheppard, D.H., Welsh, M.L., 1999. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79:23-45. Shikano, T., Fujio, Y., 1998. Immunolocalization of Na,K-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201:3031-3040. Shikano, T., Fujio, Y., 1998a. Effect of the mother''s environmental salinity on seawater tolerance of newborn guppy Poecilia reticulata. Fish. Sci. 64:10-13. Shikano, T., Fujio, Y., 1998a. Immunolocalization of Na,K-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201:3031-3040. Shikano, T., Fujio, Y., 1998b. Relationships of salinity tolerance to immunolocalization of Na+,K+ -ATPase in the gill epithelium during seawater and freshwater of the guppy, Poecilia reticulata. Zool. Sci. 15:35-41. Shikano, T., Fujio, Y., 1998d. Strain differences in seawater adaptability in newborn guppy Poecilia reticulata. Fish. Sci. 64, 987–988. Shit F. C., Yvonne, Y.M., Tng, N.L.J. Wee, J.M., Wilson, Y., Ip, K., 2009. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comparative Biochemistry and Physiology, Part A xxx . Starremans, P.G.J.F., Kersten, F.F.J.L.P.W.J., Heuvel, V.D., Knoers, N.V.A.M., Bindels, R.J.M., 2003. Dimeric architecture of the human bumetanidesensitive Na–K–Cl co-transporter. J. Am. Soc. Nephrol. 14:3039-3046. Suvitayavat, WP., Dunham, B., Haas, M., Rao, M.C., 1994.. Characterization of the proteins of the intestinal Na +/K +/Cl-cotransport. Am. J. Physiol. 267:375-384. Tang, C.H., Lee, T.H., 2007. The effect of environmental salinity on the protein expression of Na +/K + -ATPase, Na+/K+/Cl-cotransport, cystic fibrosis transmembrane conductance regulator, anion exchanger 1, and chloride channel 3 in gills of a euryhaline teleost, Tetraodon nigroviridis. Comp. Biochem. Physiol. 147A:521-528. Tang, C.H., Hwang, L.Y., Lee, T.H., 2010. Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization, and the possible role of chloride absorption. J. Exp. Biol. 213:683-693. Tang, C.H., Hwang, L.Y., Shen, I.D., Chiu, Y.H., Lee, T.H., 2011. Immunolocalization of chloride transporters to gill epithelia of euryhaline teleosts with opposite salinity-induced Na+/K+-ATPase responses Fish Physiology and Biochemistry, 37:709-724. Tipsmark, C.K., Madsen, S.S., Seidelin, M., Christensen, A.S.; Cutler, C.P.; Cramb, G.., 2002. Dynamics of Na+,K+,2Cl- cotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Journal of Experimental Zoology volume: 293 issue: 2 pages: 106-118. Tipsmark, C.K., Madsen,S.S., Borski, R.J., 2004. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J. Exp. Zool., 301A:979-991. Tipsmark, C.K., Luckenbach, J.A., Madsen, S.S., Kiilerich,P., Borski ,R.J., 2008. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of southern flounder (Paralichthys lethostigma) Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 150: 265-273. Uchida, K.,. Kaneko, T., 1996. Enchanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13:655-660. Uchida, K., Kaneko, T., Yamauchi, K., Hirano, T., 1996. Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. J Exp Zool 276:193–200. Ura, K., Mizuno, S., Okubo, T., Chida, Y., Misaka, N., Adachi, S., Yamauchi, K., 1997. Immuohistochemical study on changes in gill Na +,K + -ATPase α-subunit during smoltification in the wild masu salmon, Oncorhynchus masou. Fish Physiol. Biochem. 17:397-403. Versamos, S., Diaz, J.P., Charmantier, G., Flik, G., Blasco, C., Connes, R., 2002. Branchial chloride cells in sea bass (Dicentrarchus labrax)adapted to fresh water, seawater, and doubly concentrated seawater. J Exp Zool. 293:12-26. Prodocimo, V., Carolina, A.F., 2006. The Na+,K+,2Cl¯−cotransporter of estuarine pufferfishes (Sphoeroides testudineus and S.greeleyi) in hypo- and hyper-regulation of plasma osmolality. Comparative Biochemistry and Physiology, Part C 142:347-355. Wang, Y.F., Tseng, Y.C., Yan, J.J., Hiroi, J., Hwang, P.P., 2009. Role of SLC12A10.2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am. J. Physiol. 296:R1650-R1660. William K.F., Tse, D., W.T., Au, C., Wong, K.C., 2006. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochemical and Biophysical Research Communications. 346:1181–1190. Wilson, J.M., Laurent, P., 2002. Fish gill morphology:inside out. J. Exp. Zool. 293:192-213. Wilson, J.M., Brucel, P.L., Tufts, B., Benos, D.J., Donowitz, M., Vogl, W.A., Randall, D.J., 2000. NaCl uptake by the branchial epithelium in freshwater teleost fish:an immunological approach to ion-transport protein localization. J. Exp. Biol. 203:2279-2296. Wilson, J.M., Laurent, P., Tufts, B.L., Benos, D.J., Donowitz, M., Vogl, A.W., Randall, D.J. 2000a. NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J. Exp. Biol. 203:2279-2296. Wilson, J.M., Randall, D.J., Donowitz, M., Vogl, A.W., Ip, A.K.Y., 2000b. Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J. Exp. Biol. 203:2297-2310. Wilson, J.M., Randall , D.J., Donowitz, M., Vogl ,A.M., Ip, Y.K., 2000. Immunolocalization of ion-transport to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri)J. Exp. Biol. 203: 2297-2310. Witters, H., Berckman, P., Vangenechten, C., 1996. Immunolocalization of Na,K-ATPase in the gill epithelium of rainbow trout. Oncorhynchus mykiss. Cell Tiss. Res. 283:461-468. Wilson, J.M., Antunes, J.C., Bouc, P.D., Coimbra, J., 2004. Osmoregulatory plasticity of the glass eel of Anguilla anguilla: freshwater entry and changes in branchial ion-transport protein expression. Can J Fish Aquat Sci 61:432–442 Wood, C.M., Marshall, W.S., 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus-a euryhaline estuarine teleosts. Estuaries 17:34-52. Wu, Y.C., Lin, L.Y., Lee, T.H., 2003. Na,K,2Cl-cotransporter: a novel marker for identifying freshwater- and seawater-type mitochondria-rich cells in gills of euryhaline tilapia, Oreochromis mossambicus. Zool. Stud. 42:186-192. Xu, J.C., Lytle, C., Zhu, T.T., Payne, J.A., Benz, E.J., Forbush, B., 1994. Molecular cloning and functional expression of the bumetanide-sensitive Na +/K +/Cl-cotransport Proc. Natl. Acad. Sci. U. S. A. 91:2201-2205. Yan, J.J., Chou, M.Y., Kaneko, T., Hwang, P.P., 2007. Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. 293:C1814-C1823. Yang,W.K., Kang, C.K., Chen, T.Y., Chang, W.B., Lee, T.H., 2011. Salinity-dependent expression of the branchial Na+/K+/2Cl− cotransporter and Na+/K+-ATPase in the sailfin molly correlates with hypoosmoregulatory endurance Journal of Comparative Physiology B. 181:953–964.
前人的研究使用廣鹽性硬骨魚類為模式動物代表魚類適應海水的離子調節機制。在全球各大水族館熱帶海水魚既美麗並廣受喜愛,然而這類魚種多為窄鹽性物種只能生存在高滲透壓的海水環境中。在台灣南部海域盛產豐富的海水熱帶魚,但是至今仍鮮少有相關研究去探討這些海洋性魚種的離子調節機制。本篇研究選擇台灣常見的八種熱帶海水魚驗證其鰓上離子調節細胞的排氯機制。使用二種抗體進行西方墨點可偵測出這些海水魚的鰓皆表現鈉鉀幫浦(Na+, K+-ATPase, NKA)與鈉鉀二氯共運輸蛋白(Na+, K+, 2Cl- cotransporter 1, NKCC1)。在組織免疫染色切片中可觀察到離子調節細胞主要分布於鰓絲的鰓薄板間區表皮層。此外,NKCC1也表現在鰓上離子調節細胞基底膜上。綜和這些結果顯示熱帶海水魚是符合鰓上氯離子排除的模式以適應生存於海水環境。

Previous studies used euryhaline teleosts to illustrate the ionoregulatory model in seawater. Various tropical marine telesosts are famous and beautiful species in global aquaria. They are stenohaline species residing to hyperosmotic environments. In the southern marine of Taiwan, there are numerous species. However, few studies focused on the ionregulatory mechanism of the marine fishes to date. The present study selected 8 species to demonstrate the Cl- excretion of gill ionocytes. Two markers of the Cl- excretion, Na+, K+-ATPase (NKA) and Na+, K+, 2Cl- cotransporter 1 (NKCC1), were detected in gills of these marine fishes by western blotting with the α5 and T4 antibodies, respectively. The immunostaining section revealed that the ionocytes located prominently to the interlamellae regions of gill filaments. In addition, the distributions of NKCC1 were found in the basolateral membranes of the gill ionocytes. These results indicated that the tropical marine teleosts conformed to the Cl- excretion-model for adapting to the seawater.
其他識別: U0005-0208201309155100
Appears in Collections:生命科學院

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.