Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/81155
標題: 無患子甲醇萃取物可經由PARP蛋白的活化來誘導非小細胞肺癌株A549的壞死
Methanol extract of Sapindus saponaria can induce the necrosis of None-small-cell lung carcinoma A549 cell through the activation of PARP pathway
作者: 陳彥名
Chen, Yan-Ming
關鍵字: 無患子;Sapindus saponaria
出版社: 生命科學院碩士在職專班
引用: 1. 行政院衛生署 2. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. (2000); 29(3-4):222-30. 3. Cheng, YW; Chiou HL, Sheu GT et al.. The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Research. American Association for Cancer Research. 1 (2001); 61 (7): 2799–2803 4. Chao, W., Shen, Y. Li, L., Zhao, H., Meiler, SE., Cook, SA. and Rosenzweig, A. Fas-associated death-domain protein inhibits TNF-α mediated NF-κB activation in cardiomyocytes. Heart and Circulatory Physiology. (2005); 289, pp.2073-2080. 5. Choi SH. Free amino acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. J Agric Food Chem. (2011); 59(24):12801-14. 6. Clement MV, Pervaiz S. Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res. (1999); 30(4):247-52. 7. Danesi R, et al. Pharmacogenomics in non-small-cell lung cancer chemotherapy. Adv Drug Deliv Rev. (2009); 61(5):408-417. 8. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A., and Yuan, J. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, (2005); 112-119. 9. Hackshaw, AK. Lung cancer and passive smoking. Statistical Methods in Medical Research. (1998); 7(2): 119–136. 10. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. (1993); 57(5 Suppl):715S-724S; discussion 724S-725S. 11. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. (2011); 144, 646-674. 12. Johnson, D.G. and Walker, C. L. Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol Toxicol. (1999); 39, 295-312. 13. Kumar, V., Abbas, A. K., Fausto, N. & Aster, J. C. Robbins and Cotran Pathological Basis of Disease. Saunders Elseveir. (2010). 14. Laubenbacher R, Hower V, Jarrah A, Torti SV, Shulaev V, Mendes P et al. A systems biology view of cancer. Biochim. Biophys. (2009); Acta 1796, 129-139. 15. Lindstenm T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, R., Waymire, K. G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V. M., Adelman, D. M., Simon, M. C., Ma, A., Golden, J A., Evan, G., Korsmeyer, S. J., MacGregor, G. R. and Thompson, C. B. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Cell. (2000); 6, 1389-1399. 16. Lum, J. J., Bauerm D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T. and Thompson, C. B. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. (2005); 120, 237-248. 17. Lundberg, A. S. and Weinberg, R. A. Control of the cell cycle and apoptosis. Cancer. (1999); 35, 1886-1894. 18. Majno, G, and Joris, I. Apoptosis, oncosis and necrosis. An overview of cell death. Am. J. Pathol. (1995); 146, 3-15. 19. Minna, JD; Schiller JH. Harrison''s Principles of Internal Medicine. 17th. McGraw-Hill. (2008); 551–562. ISBN 0-07-146633-9. 20. Mutaku, JF., Poma, JF., Many, MC., Denedm JF. and Hove, MFVD. Cell necrosis and apoptosis are differentially regulated during goiter development and iodine-induced involution. Journal of Endocrinology. (2002); 172, pp. 375-386. 21. National Institute on Alcohol Abuse and Alcoholism. 22. Nele Festjens, Tom Vanden Berghe, Peter Vandenabeele. Necrosis, a well-orchestrated form of cell demise: Signaling cascades, important mediators and concomitant immune response. Biophysica Acta. 1757 (2006); 1371-1387. 23. Nishimura, Y. and Lemasters, J. J. Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ. (2001); 8, 850-858. 24. Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. (2001); 31(11):1287-312. 25. Proskuryakov, S. Y. a., Konoplyannikov, A. G. & Gabai, V. L. Necrosis: a specific form of programmed cell death? Experimental Cell Research 283, 1-16. 26. Putcha, GV., Harris, CA., Moulder, KL., Easton, RM., Thompson, CB. and Johnson, EM. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. The Journal of Cell Biology. (2002); 157, pp. 441-453. 27. Raff, M.C., Barres, B.A., Burne, J.F., Coles, H.S., Ishizaki, Y., and Jacobson, M.D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. (1993); 262, 695-700. 28. Rami, A. Ischmic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol (2003); 13, 75-88. 29. Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M. and Thompson, C. B. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Cell. (2003); 23, 7315-7328. 30. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. and Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lmphocytes is insufficient to maintain either cell size or viability. Cell. (2000); 6 683-692 31. Spiro SG, Silverstri GA. One hundred years of lung cancer. Am J Respir Crit Care Med. (2005); 172(5):523-529. 32. Travis, WD; Travis LB, Devesa SS. Lung cancer. Cancer. (1995); 75 (Suppl. 1): 191–202. 33. Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci (2000); 23, 20-26. 34. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregorm G. R., Thompson, C. B. and Korsmeyer, S. J. Proapoptotic BAX and BAK: a requise gateway to mitochondrial dysfunction and death. Science. (2001); 292, 727-730. 35. Wei YH, Lu CY, Lee HC, Pang CY, Ma YS. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci. (1998); 854:155-70. 36. Yamashima, T. Ca2+-dependent proteases in ischemic neuronal death: a conserved ''calpain-cathepsin cascade'' from nematodes to primates. Cell Calcium. (2004); 36, 285-293. 37. Zheng, H; Aziz HA, Nakanishi Y et al.. Oncogenic role of JC virus in lung cancer. Journal of Pathology. 5 (2007); 212 (3): 306–315. 38. Zong, W. X., Disworth, D., Bauer, D. E., Wang, Z. Q. and Thompson, C. B. Alkylating DNA damage stimulates a regulated from of necrotic cell death. Genes. (2004); 18, 1272-1282. 39. Zong, W. X. and Thompson, C. B. Necrotic death as a cell fate. Genes Dev. (2006); 20, 1-15.
摘要: 
惡性腫瘤是目前人類十大死亡主因中的第一位,而肺癌又是惡性腫瘤中排名第一的癌症。隨著中草藥現代化的崛起,越來越多的中草藥萃取物也被拿來研究對抗癌症。無患子(Sapindus saponaria)為國人廣為所知的落葉喬木,原產地為熱帶或副熱帶區域,如中國大陸長江流域以南地區、印度、日本、越南、寮國與台灣等,其種子常做為清潔劑使用。在細胞活性測試中,發現無患子的甲醇萃取物具有毒殺癌細胞的功能,而在針對不同種類的癌細胞毒殺測試中觀察到A549非小細胞肺癌細胞對其反應最為顯著。加入無患子甲醇萃取物後可明顯發現A549細胞的生長週期被迫停滯於G1期,而近一步的利用了雙染實驗測試後觀察到細胞在經過無患子甲醇萃取物處理後發生細胞壞死的現象。

為確認及研究其細胞壞死的訊號傳遞途徑,利用西方墨點法觀察細胞週期變化及細胞凋亡路線。於西方墨點測試中,細胞凋亡路徑的下游蛋白質caspase-3並無切剪的片段出現;而同樣影響細胞凋亡及細胞壞死的調控蛋白PARP則是有出現切剪的片段。更進一步測試細胞壞死相關路徑,於ROS測試中,經藥物處理過的細胞於各時間點其ROS濃度均無明顯差異。因此推論無患子甲醇萃取物會誘導A549非小細胞肺癌細胞,並非經由ROS途徑,而是經由PARP路徑導致細胞壞死。

Tumor (cancers) is one of the ten leading causes of death, and lung cancer is the main causes of cancer death worldwide. With the raising of modern herb medicine, more and more herbs are tested against cancers. Sapindus saponaria, native to warm temperate to tropical regions like the southern region of Yangtze river in China, India, Japan, Vietnam, Laos and Taiwan, is a well-known deciduous tree. The drupes can be used as a natural surfactant for cleaning. In MTT assay we found that the methanol extract of S. saponaria has effect to inhibit the growth of A549 NSCLC cell lines. The methanol extract of S. saponaria owns the ability to arrest A549 cancer cell growth at G1 phase in cell cycle test. We also found that methanol extract of S. saponaria extract treated A549 cancer cell shows necrosis signals in double staining test.

To justify the responsible signal pathway of necrosis in A549 cancer cell treatment with methanol extract of S. saponaria, we performed the Western Blotting test. The downstream protein caspase-3 was shown no cleaved fragments in treated A549 cell. However, PARP, the key protein in apoptosis and necrosis, has been cleaved into fragments. In addition, there has no noticeable difference among treatment time intervals in ROS test. Therefore, the methanol extract of S. saponaria may induce the necrosis of A549 cell not via ROS pathway but via the PARP activation.
URI: http://hdl.handle.net/11455/81155
其他識別: U0005-0101201316115800
Appears in Collections:生命科學院

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.