Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/81156
標題: 營養劑對杏鮑菇再生性的影響
he effect of regeneration of Pleurotus eryngii by adding nutrients
作者: 紀鴻淵
Chi, Hung-Yuan
關鍵字: 論文;Thesis;中興大學;National Chung Hsing University
出版社: 生命科學院碩士在職專班
引用: 王伯徹、陳啟楨、華傑。1997。食藥用菇類的培養與應用。食品工業發展研究所編印。新竹。187頁。 王伯徹。2009。菇類之食藥用價值及其多樣化市場產品開發。農業生技產業季刊,18,34-40。 王波。2009。杏鮑菇栽培新技術。四川栽培技術出版。四川。88頁 王波、鮮靈。2001。杏鮑菇栽培與加工。金盾出版社。北京。157頁。 石信德。2010。食藥用菇類液體菌種栽培技術之潛力。農業生技產業季刊, 23,16-21。 杜自彊、謝逢庚。1988。利用農產廢棄物栽培食用菇之研究。台東區農業改良場研究彙報 2:65-73。 倪禮豐。2003。水稻廢棄機質利用。花蓮區農農業專訊 43:21-24。 張宏祥。2011。營養劑對平菇再生性的影響。國立中興大學生命科學院碩士在職專班碩士學位論文。 陳錦桐。2003。杏鮑菇核斑菌之鑑定、生物特性、偵測與防治。國立中興大學植物病理學系碩士論文。68頁 陳錦桐、黃振文。2004。杏鮑菇核斑菌之鑑定植病會刊 13:17-26。 陳錦桐、簡宣裕、彭金騰、陳美杏。2005。杏鮑菇栽培基再利用之研究。台灣農業研究 54:235-244 彭金騰。1993。杏鮑菇栽培技術簡介。行政院農委會與台灣省政府農林廳編印。南投。11頁。 彭金騰。1996。杏鮑菇木屑塑膠包栽培之初步研究。中華農業研究 45:388-392。 彭金騰。1996。杏鮑菇稻草之栽培研究。中華農業研究 45:382-387。 彭金騰。1996。杏鮑菇自動化生產之研究 中華民國農業科技研究成果。行政院農委會編印。臺北。135-137。 彭金騰。1997。不同樹種來源單獨與混合木屑對杏鮑菇瓶栽生產影響之研究。中華農業研究。46:51-59。 彭金騰。1998。杏鮑菇自動化生產之研究 中華民國農業科技研究成果。行政院農委會編印。臺北。44-46。 彭金騰、李建民、蔡英芳。2000。不同有機添加物對杏鮑菇瓶栽自動化生產影響之研究。中華農業研究 49:56-64。 廖志仁。1988。平菇、滑菇、草菇栽培法。五洲出版社。臺北。330頁。 蔡宜峰、陳俊位。2011。杏鮑菇舊栽培介質再利用方法。 生物資源網:http://www.nchu.edu.tw/~biores/lindex.htm。 陳昇明。真菌實驗室:http://web.nchu.edu.tw/~smtschen/。 菇類天地:http://tw.myblog.yahoo.com/kulei523/。 自然科學博物館:http://digimuse.nmns.edu.tw/ Bonatti, M., Karnopp, P., Soares, H.M., Furlan, S.A., 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry 88, 425–428. Chang, S.T. 2005. Witnessing the development of the mushroom industry in China. In: Tan et al. (Eds.), Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products, Shanghai, China, April 8–12. Acta Edulis Fungi 12 (Supplement), pp. 3–19. Danny, L. R., Zeri, and S. W. Kang. 2004. Recycling of Spent Oyster Mushroom Substrate. Mushroom Growers’ Handbook 1 part II. Oyster Mushrooms. MushWorld 275 pp. Gyorfi, J., Hajdu, C.S., 2007. Casing-material experiments with P. eryngii. Int. J. Horticult. Sci. 13, 33–36. Kerem, Z., Hadar, Y., 1995. Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation. Appl. Environ. Microbiol. 61, 3057–3062. Mandeel, Q.A., Al-Laith, A.A., Mohamed, S.A., 2005. Cultivation of oyster mushrooms(Pleurotus spp.) on various lignocellulosic wastes. World Journal of Microbiology and Biotechnology 21, 601–607. Moore-Landecker,E.1996.Fundamentals of the fungi, Prentice-Hall International, London. Peng, J.T., Lee, C.M., Tsai, Y.F., 2000b. EVect of diVerent organic supplements on the production of king oyster mushroom by using bottle cultivation technology. J. Agri. Res. China 49, 56–64. Peng, J.T., Dai, M.C., Tsai, Y.F., Chen, M.H., Chen, J.T., 2001. Selection and breeding of king oyster mushroom. J. Agri. Res. China 50, 43–58. Royse, D.J., 1999. Yield stimulation of king oyster mushroom, Pleurotus eryngii, by brewer’s grain and SpawnMate IISER supplementation of cottonseed hull and wood chip substrate. Mush. News 47 (2), 4–8. Royse, D.J., Beelman, R.B., Weil, D.A., 2004. Manganese sulfate additions increase mushroom (Pleurotus cornucopiae) yield in delayed release nutrient-supplemented cottonseed hull/wheat straw substrate. Mush. Sci. 16, 359–364. Royse, D. J. 1992. Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju. Appl. Microbiol. Biotechnol. 38:179-182. Rodriguez Estrada, A., Royse, D.J., 2005. Cultivation of Pleurotus eryngii in bottles. Mush. News 53 (2), 10–19. Rodriguez Estrada , A.E., Royse,D.J., 2007. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresource Technology 98 (2007) 1898–1906. Rodriguez Estrada , A.E., Jimenez-Gasco, M.M., Royse,D.J., 2009. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresource Technology 100 (2009) 5270–5276. Singer, R. 1987. The Agaricales in Modern Taxonomy. J. Cramer. 4th ed. 981pp. Victor, G. T., A. T. Martinez, M. J. Martinez., and F. Guillen. 2001. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii H2O2 generation and the influence of Mn2. Eur. J. Biochem. 268:4787-4793. Zadražil, F. and F. Brunnert. 1981. Investigation of physical parameters important for the solid state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11:183-188.
摘要: 
合作農場最主要以杏鮑菇的生產最大宗,但是杏鮑菇的太空包收割只有一次,每一包的收割約為180~250公克。一般菇類的採收如洋菇(Agaricus bisporus)、香菇(Lentinula edodes)、秀珍菇(Pleurotus ostreatus)都可以採收至少三次以上(Velazquez-Cedeno et al., 2002; Royse, 2001, Royse et al.,2008),而杏鮑菇只能採收一次,是因為第二週期的產量及品質不如第一週期,且出菇時間較長(彭,1997)。為了確定是養分或是水分流失造成的影響,筆者進行了補充養分以及水分的實驗,並觀察二次出菇的數量,且利用統計方法分析何種營養劑可以獲得最大的二次出菇數量。

牛奶和豆漿加水稀釋成1.25%、2.5%、5%;元素和海草粉加水稀釋成0.1%、0.2%、0.4%做為營養劑使用。由農場取已採收過一次菇之杏鮑菇太空包→編號→編組→利用抽籤方式隨機分配→置於栽培室→每週加入10ml之營養劑→採收→觀察記錄杏鮑菇之產量及品質。

實驗結果,杏鮑菇的採收重量、數量及生物轉換率很明顯的受到添加的營養劑不同而有所影響。不同濃度的牛奶液和元素液的添加對重量、數量及生物轉換率均有影響。不同濃度的豆漿液和元素液的添加則沒有太大影響。添加牛奶液2.5%、5%及豆漿液1.25%、2.5%和5%會得到較其他營養劑高的杏鮑菇採收重量,牛奶液2.5%會得到最高的重量;添加牛奶液2.5%、5%及豆漿液1.25%、5%會得到較其他營養劑高的杏鮑菇生物轉換率,牛奶液2.5%會得到最高的生物轉換率;添加牛奶液2.5%、5%及豆漿液1.25%、2.5%和5%會得到較其他營養劑高的杏鮑菇採收數量及平均大小,牛奶液2.5%會得到最高的數量,牛奶液5%會得到最高的平均大小。本實驗總採收的杏鮑菇數量共68個,重量分布主要集中在40-80公克之間,平均重量為62.3公克,依照目前市場上的分類,62.3公克會落在A級杏鮑菇的分類,屬於市場最好的價格。牛奶液2.5%及豆漿液5%有最高的產值。

Pleurotus eryngii is the most production in the cooperative farm, but the bag typically harvest only one break and the harvest yield about 180-250 g per bag. Generally, the three breaks could be harvested by farmer in the general mushrooms like Agaricus bisporus, Lentinula edodes, and Pleurotus ostreatus (Velazquez-Cedeno et al., 2002; Royse, 2001,Royse et al., 2008). The reason for the only one harvest of Pleurotus eryngii is the yield and quality wasn’t better and the incubation time extended in the second time harvest (Peng, 1997). In order to confirm the effect of the lack of nutrients or water caused the second harvest difficultly, we designed an experiment to observe the harvest yield in the second time break by adding the nutrients and water.

The different concentrations of 1.25%, 2.5%, 5% milk or soybean and 0.1%, 0.2%, 0.4% element or seaweed algae were added in the bags which were harvest one break. We chose the bags randomly and divided into 13 groups. The nutrients were added 10 ml per time in two week.

The result, There were significant effects of the harvest yield, the harvest number and biological efficiency (BE) by adding the different nutrients. All of the different concentrations of milk or soybean caused the effects of the harvest yield, the harvest number and biological efficiency. Mushroom yields were significantly higher from adding 2.5%, 5% milk or 1.25%, 5% soybean were added than other nutrients, and the highest yield at 2.5% milk. The better BEs were harvested from adding 2.5%, 5% milk or 1.25%, 5% soybean, and the best BE at 2.5% milk. The more harvest number and average size were calculated from adding 2.5%, 5% milk or 1.25%, 2.5%, 5% soybean, and the most harvest number at 2.5% milk ; the most average size at 5% milk. In this experiment, the harvest number was a total of 68, and the weights were most distributed among 40-80 g. The average of weights was 62.3 g falling into the grade A of categories, and it was the best price in the market. The best benefit was earned from 2.5% milk and 5% soybean.
URI: http://hdl.handle.net/11455/81156
其他識別: U0005-0408201200595800
Appears in Collections:生命科學院

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.