Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/81162
標題: 藉由剔除CD25調節性T細胞增強EGFR DNA疫苗對抗EGFR大量表現之轉移性肺癌
Enhancing efficacy of therapeutic EGFR DNA vaccine by depletion of CD25+ regulatory T cell in a mouse model of metastatic EGFR positive lung cancer
作者: 陳杏燕
Chen, Hsing-Yen
關鍵字: 轉移性肺癌;metastatic lung cancer;CD25調節性T細胞;CD8+;CTL;CD25+ regulatory T cell;CD8+;CTL
出版社: 生命科學院碩士在職專班
引用: 1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43-66 2. Liu CY, Seen S. Gefitinib therapy for advanced non-small-cell lung cancer. Ann Pharmacother. 2003;37(11):1644-53. Review 3. Huang SF, Liu HP, Li LH, Ku YC, Fu YN, Tsai HY, Chen YT, Lin YF, Chang WC, Kuo HP, Wu YC, Chen YR, Tsai SF. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin Cancer Res. 2004 15;10(24):8195-203. 4. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol.2003 15;21(20):3798-807 5. Dancey J. Epidermal growth factor receptor inhibitors in clinical development. Int J Radiat Oncol Biol Phys. 2004 1;58(3):1003-7. Review 6. Lynch TJ, Bell DW, Sordella R, et al Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39 7. Choo AY, Choo DK, Kim JJ, Weiner DB. DNA vaccination in immunotherapy of cancer. Cancer Treat Res. 2005;123:137-56. Review 8. Lu Y, Wei YQ, Tian L, Zhao X, Yang L, Hu B, Kan B, Wen YJ, Liu F, Deng HX, Li J, Mao YQ, Lei S, Huang MJ, Peng F, Jiang Y, Zhou H, Zhou LQ, Luo F. J Immunol. Immunogene therapy of tumors with vaccine based on xenogeneic epidermal growth factor receptor. 2003 15;170(6):3162-70 9. Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS, Yang HJ, Lin CC. The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genet Vaccines Ther. 2009 30;7:2 10. Fidler IJ. Differentiation. The organ microenvironment and cancer metastasis. 2002;70(9-10):498-505. Review 11. Langley RR, Fidler IJ. Endocr Rev. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. 2007;28(3):297-321. Epub 2007 Apr 4 12. Gorelik E, Gunji Y, Interaction of tumor cells and immune system in the metastatic process Goldfarb RH.Biochem Cell Biol. 1988;66(6):617-25 . 13. Read, S., V. Malmstrom, F. Powrie. 2000. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192: 295-302 14. Wang, H. Y., D. A. Lee, G. Peng, Z. Guo, Y. Li, Y. Kiniwa, E. M. Shevach, R. F. Wang. 2004. Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20: 107-118. 15. McHugh, R. S., M. J. Whitters, C. A. Piccirillo, D. A. Young, E. M. Shevach, M. Collins, M. C. Byrne. 2002. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16: 311-323 16. Hori, S., T. Nomura, S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061. 17. Ohmura Y, Yoshikawa K, Saga S, Ueda R, Kazaoka Y, Yamada S. Oncol Rep. Combinations of tumor-specific CD8+ CTLs and anti-CD25 mAb provide improved immunotherapy. 2008;19(5):1265-70 18. Xu L, Xu W, Jiang Z, Zhang F, Chu Y, Xiong S. Depletion of CD4(+)CD25(high) regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy. Cancer Biol Ther. 2009 4;8(1). 19. Chuang CM, Hoory T, Monie A, Wu A, Wang MC, Hung CF. Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+CD25+ T regulatory cells. Vaccine. 2009 29;27(5):684-9. Epub 2008 3. 20. Van Meirvenne S, Dullaers M, Heirman C, Straetman L, Michiels A, Thielemans K. Mol Ther. In vivo depletion of CD4+CD25+ regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells. 2005 ;12(5):922-32 21. Comes A, Rosso O, Orengo AM, Di Carlo E, Sorrentino C, Meazza R, Piazza T, Valzasina B, Nanni P, Colombo MP, Ferrini S. J Immunol.CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. 2006 1;176(3):1750-8. 22. C.G. Drake, E. Jaffee and D.M. Pardoll, Mechanisms of immune evasion by tumors, Adv Immunol 90 (2006), pp. 51–81 23. Fontenot, J. D., J. P. Rasmussen, L. M. Williams, J. L. Dooley, A. G. Farr, A. Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22: 329-341 24. Wan, Y. Y., R. A. Flavell. 2005. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102: 5126-5131. 25. Furtado, G. C., D. Olivares-Villagomez, M. A. Curotto de Lafaille, A. K. Wensky, J. A. Latkowski, J. J. Lafaille. 2001. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev. 182: 122-134 26. Lehmann, J., J. Huehn, M. de la Rosa, F. Maszyna, U. Kretschmer, V. Krenn, M. Brunner, A. Scheffold, A. Hamann. 2002. Expression of the integrin E 7 identifies unique subsets of CD25+ as well as CD25– regulatory T cells. Proc. Natl. Acad. Sci. USA 99: 13031-13036 27. Kohm, A. P., J. S. McMahon, J. R. Podojil, W. S. Begolka, M. DeGutes, D. J. Kasprowicz, S. F. Ziegler, S. D. Miller. 2006. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J. Immunol. 176: 3301-3305 28. Zelenay, S., J. Demengeot. 2006. Comment on "cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells". J. Immunol. 177: 2036-2037 29. Fecci, P. E., A. E. Sweeney, P. M. Grossi, S. K. Nair, C. A. Learn, D. A. Mitchell, X. Cui, T. J. Cummings, D. D. Bigner, E. Gilboa, J. H. Sampson. 2006. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin. Cancer Res. 12: 4294-4305 30. Gray PW and Goeddel DV Molecular biology of interferon-gamma. Lymphokines 13: 151-162 (1987)
摘要: 
肺癌指的是肺部組織內細胞生長失去控制的疾病。這種細胞生長可能造成轉移,就是侵入相鄰的組織和滲透到肺部意外。絕大多數肺癌是肺部惡性上皮細胞腫瘤,由上皮細胞病變而造成。肺癌是造成男性和女性癌症相關死亡的最主要原因。全球每年有130萬人死於肺癌。先前,我們報告在細胞外域經由操作基因槍送入naked DNA Plasmid coding的異種表皮生長因子受體,可誘發強烈的CTL活性和控制內源性表皮生長因子受體表現在小鼠皮下腫瘤LL2肺腫瘤的增長。然而,我們目前的研究顯示,操作基因槍送入EGFR DNA缺乏有效的治療患有轉移性LL2肺腫瘤的小鼠。而調節性T細胞 ( Tregs ) 對腫瘤免疫反應發揮重要的作用。因此,我們進一步確定是否利用CD25消耗抗體PC61剔除CD25 T細胞,增強DNA疫苗對抗轉移性肺腫瘤LL2的生長。我們發現,結合PC61的EGFR DNA疫苗顯著降低肺腫瘤的生長。在研究淋巴結細胞毒活性的結果顯示,結合PC61的EGFR DNA疫苗對於治療抗腫瘤作用和增加功能性CD8+ T細胞與CTL活性,有顯著的關連。
此外,在體內淋巴細胞耗竭實驗進一步證實,EGFR DNA疫苗與PC61抗體結合的療效是依賴於CD8+ T細胞。因此由這些觀察的結果顯示,可以經由操作基因槍送入EGFR DNA疫苗結合剔除CD25 T細胞的抗體,增加對大量表現EGFR之轉移性肺腫瘤的療效

Previously, we reported that gene gun administration with naked DNA plasmids coding for the extracellular domains of the xenogenic EGFR gene can induce strong CTL activity and control endogenous EGFR -expressing LL2 lung tumors growth in subcutaneous tumor models in mice. However, our present study observed that gene gun administration EGFR DNA vaccines alone lack of effective against lung metastatic LL2 tumor in mouse model was established experimentally by an intravenous injection of tumors. Since regulatory T cells (Tregs) play an important role in immunosuppressive responses against tumors by immunotherapy. Thus, we further determine whether break suppressing immune responses by depletion of CD25+ Treg cells using CD25 depleting Ab PC61 would enhance the efficacy of DNA vaccine against metastatic LL2 lung tumor growth. We found that combination of EGFR DNA vaccine with PC61 vaccination significantly reduce the tumor growth in lung and prolong mice over either modality alone. In estimation of cytotoxicity activity studies of the lymph nodes revealed that therapeutic antitumor effect of combination with EGFR DNA vaccine and PC61 is associated with a significant increased the number of functional CD8+ T cell and level of CTL activity. Furthermore, in vivo lymphocyte depletion experiments further confirmed that the efficacy of combining with EGFR DNA vaccine and PC61 Ab, is dependent on CD8+ T cells. Thus, these observations suggest that increased therapeutic efficacy against metastatic EGFR positive lung tumor could be obtained by combining gene gun administration of naked DNA vaccine and depletion of CD25 Treg cells by using depleting antibody.
URI: http://hdl.handle.net/11455/81162
其他識別: U0005-1807201215564100
Appears in Collections:生命科學院

Files in This Item:
File SizeFormat Existing users please Login
nchu-101-5098052026-1.pdf930.59 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.