Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/81167
標題: 高鹽甲烷太古生物S-腺苷甲硫胺酸合成酶基因與預測結構之分析
Gene and putative protein structure of S-adenosylmethionine synthetase from Methanohalophilus portucalensis FDF1T
作者: 林佳蓁
Lin, Chia-Chen
關鍵字: S-腺苷甲硫胺酸合成酶高鹽甲烷太古生物;S-adenosylmethionine synthetase;Methanohalophilus portucalensis FDF1T
出版社: 生命科學院碩士在職專班
引用: 楊道任。1995。嗜鹽性甲烷古生菌相容質glycine betaine的合成相關酵素及其影響因子之研究。國立中興大學植物研究所碩士學位論文。 蘇旭梅。2005。嗜鹽性甲烷太古生物相容質甜菜鹼自體生合成基因的選殖。國立中興大學生命科學所碩士學位論文。 賴姝蓉。2011。高鹽甲烷太古生物之相容質甜菜鹼自體生合成酵素特性分析並探討其應用於模式生物阿拉伯芥與斑馬魚抗鹽抗旱的可行性。國立中興大學生命科學所博士學位論文。 葉俊麟。2012。高鹽甲烷太古生物腺苷高半胱胺酸水解酵素基因與預測結構之分 析。國立中興大學生命科學所博士學位論文。 Aguinaldo, A. M., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff and J. A. Lake. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 387: 489–493. Andersson, J. O. and S. G. Andersson. 1999. Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16: 1178–1191. Avila, M. A., J. Mingorance, M. L. Martinez-Chantar, M. Casado, P. Martin-Sanz, L. Bosca and J. M. Mato. 1997. Regulation of rat liver S-adenosylmethionine synthetase during septic shock: role of nitric oxide. Hepatology 25: 391 – 396. Balch, W. E., G. E. Fox, C. J. Magrum, C. R. Woese and R. S. Wolfe. 1979. Methanogens: reevalutation of a unique biological group. Microbial. Rev. 43: 260-296. Baldauf S. L. and J. D. Palmer. 1993. Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc. Natl Acad. Sci. USA. 90, 11558–11562. Boone D. R., I. M. Mathrani, Y. Liu, J. A. G. F Menaia, R. A. Mah. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Sys Bact 43: 430–437. Brochier, C., E. Bapteste, D. Moreira and H. Philippe. 2002. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 18: 1–5. Brown, J. R., C. J. Douady, M. J. Italia, W. E. Marshall and M. J. Stanhope. 2001. Universal trees based on large combined protein sequence datasets. Nat. Genet. 28: 281–285. Cantoni, G. L. 1953. S-adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. Biol. Chem. 204: 403–416. Chan, A., F. Tchantchou, V. Graves, R. Rozen, T. B. Shea. 2008. Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: critical role of s-adenosylmethionine. J Nutr Health Aging. 12: 252-261. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiological Reviews 53: 121-147. Chen, S.-Y., M.-C. Lai, S.-J. Lai and Y.-C. Lee. 2009. Characterization of osmolyte betaine synthesizing sarcosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. Arch Microbiol. 191: 735-34. Deckert G., P. V. Warren, T. Gaasterland, W. G. Young, A. L. Lenox, D. E. Graham, R. Overbeek, M. A. Snead, M. Keller, M. Aujay, R. Huberk, R. A. Feldman, J. M. Short, G. J. Olsen and R. V. Swanson. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 392: 353-358. Falkenberg, P. and A. R. Strøm. 1990. Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochem. Biophys. Acta. 1034: 253-259. Ferguson, T. J., and R. Mah. 1983. Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45:265-274. Fislage, M., M. Roovers, I. Tuszynska, J. M. Bujnicki, L. Droogmans and W. Versées. 2012. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Nucleic Acids Research. 40: 5149–5161. Fukushima, T., T. Mizuki, A. Echigo, A. Inoue and R. Usami. 2005. Organic solvent tolerance of halophilic a-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles. 9:85–89 Garrido, F., C. Alfonso, J. C. Taylor, G. D. Markham and M. A. Pajares. 2009. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Biochim. Biophys. Acta 1794: 1082–1090. Garrido, F., J. C. Taylor, C. Alfonso, G. D. Markham and M. A. Pajares. 2012. Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids. 42: 361-73. Gasset, M., C. Alfonso, J. L. Neira, G. Rivas and M. A. Pajares. 2002. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochem. J. 361: 307–315. Glaser, F., T. Pupko, I. Paz, R. E. Bell, D. Bechor-Shental, E. Martz and N. Ben-Tal. 2003. ConSurf: identification of functional regions in proteins by surfacemapping of phylogenetic information. Bioinformatics. 19: 163–164. Gonzalez, B., M. A. Pajares, J. A. Hermoso, L. Alvarez, F. Garrido, J. R. Sufrin, and J. Sanz-Aparicio. 2000. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methioninebinding site. J. Mol. Biol. 300: 363–375. Graham, D. E., C. L. Bock, C. Schalk-Hihi, Z. J. Lu, and G. D. Markham. 2000. Identification of a Highly Diverged Class of S-Adenosylmethionine Synthetases in the Archaea. J. bio. Chem. 275: 4055–4059. Gilbert, S. D., R. P. Rambo, D. V. Tyne1 , and R. T. Batey. 2008. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Biol.15: 177-182 Hafner, E. W., C. W. Tabor and H. Tabor. 1977. Isolation of a metK Mutant with a Temperature-Sensitive S-Adenosylmethionine Synthetase. J. Bacteriol. 132: 832–840. Hendrickson, E. R., J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis and R. C. Ebersole. 2002. Molecular analysis of Dehalococcoides 16 S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 68: 485–495. Hickey, A. J., E, C. de Macario, E. Conway and A. J. L. Macario. 2002. Transcription in the Archaea: Basel factors, regulation, and stress-gene expression, Cri Rev. Biochem. Mol. Biol. 37: 537-599. Horikawa S., M. Ishikawa, H. Ozasa and K. Tsukada. 1989. Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase. Eur. J. Biochem. 184: 497–501. Hsing, W. and E. Canale-Parola. 1996. A Methyl-Accepting Protein Involved in Multiple-Sugar Chemotaxis by Cellulomonas gelida. J. Bacteriol. 178:5153–5158. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p117-132. In J. R. Norris and D. W. Ribbons (ed.) Method in microbiology, vol 3B. Academic press Inc., New York, NY. Iloro I., R. Chehin, F. M. Goñi, M. A. Pajares, J. L. Arrondo. 2004. Methionine adenosyltransferase alpha-helix structure unfolds at lower temperatures than beta-sheet:a 2D-IR study. Biophys. J. 86: 3951–3958. Imhoff, J. F. and F. Rodriguez-valera. 1984. Betaine is the main compatible solute of halophilic eubacteria. J. Biotechnol. 160: 478-479. Jarrell, K. F., D. Faguy, A. M. Hebert, and M. L. Kalmokoff. 1992. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can. J. Microbiol. 38:65-8. Karouzakis, E., R. E. Gay, S. Gay, M. Neidhart. 2011. Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum Kende, H. 1989. Enzymes of ethylene biosynthesis. Plant Physiol. 91: 1-4. Khandjian, E. W. 1986. UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol. Biol. Rep. 11:107-15. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, S. K. Hong and J. W. Suh. 2003. Accumulation of S-Adenosyl-L-Methionine Enhances Production of Actinorhodin but Inhibits Sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592–600. Kimura, Y., S. Kawasaki, H. Yoshimoto, K. Takegawa. 2010. Glycine Betaine Biosynthesized from Glycine Provides an Osmolyte for Cell Growth and Spore Germination during Osmotic. J. Bacteriol. 192: 1467–1470. Komoto, J., T. Yamada, Y. Takata, G. D. Markham, F. Takusagawa. 2004. Crystal structure of the S-adenosylmethionine synthetase ternary complex: a novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry. 43:1821-31. Kuhlmann, A. U., E. Bremer. 2002. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus sp. Appl. Environ. Microbiol. 68:772-783. Kuo, M. M. C., W. J. Haynes, S. H. Loukin, C. Kung, and Y. Saimi. 2005. Prokaryotic K+ channels: From crystal structures to diversity. Fems Microbiol. Rev. 29:961-985. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-5358. Lai, M. C., D. R. Yang, and M. J. Chuang. 1999. Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl. Environ. Microbiol. 65:828-33. Lai, M. C., K. R. Sowers, D. E. Robertson, M. F. Roberts, and R. P. Gunsalus. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173:5352-8. Lai, S. J, M. C. Lai. 2011. Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from Halophilic methanogen methanohalophilus portucalensis. PLoS One. 6: e25090. Lai, M. C., and R. P. Gunsalus. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174:7474-7. Lai, M.-C. and S.-C. Chen. 2001. Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int. J. Syst. Evol. Microbiol. 51: 1873-1880. Lai, M. C., C. C. Wang, M. J. Chuang, Y. C. Wu, and Y. C. Lee. 2006. Effects of substrate and potassium on the betaine-synthesizing enzyme glycine sarcosine dimethylglycine N-methyltransferase from a halophilic methanoarchaeon Methanohalophilus portucalensis. Res. Microbiol. 157:948-55. LeGros, L., A. B. Halim, M. E. Chamberlin, A. Geller and M. Kotb. 2001. Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J. Biol. Chem. 276: 24918–24924. Le Rudulier, D., A. R. Strǿm, A. M. Dandekar, L. T. Smith, and R. C. Valentine. 1984. Molecular biology of osmoregulation. Science. 224:1064-1068. Levkovitz Y., J. E. Alpert, C. E. Brintz, D. Mischoulon, G. I. Papakostas. 2012. Effects of S-adenosylmethionine augmentation of serotonin-reuptake inhibitor antidepressants on cognitive symptoms of major depressive disorder. J. Affect. Disord. 136: 1174–1178. Li, D., J. Yu, L.Tian, X. Ji, Z.Yuan. 2002. Production of SAM by recombinant Pichia pastoris. Chin. J. Biotechnol. 18: 295-299. Lu, W. D., Z. M. Chi and C. D. Su. 2006. Identification of glycine betaine as compatible solute in synechococcus sp. WH8102 and characterization of its N-mehyltransferase genes involved in betaine synthesis. Arch. Microbiol. 186: 495-506. Lu, S. C., I. Gukovsky, A. Lugea, C. N. Reyes, Z. Z. Huang, L. Chen. 2002. Role of S-adenosylmethionine in two experimental models of pancreatitis. Faseb J. 17: 56–58. Luo Y., Z. Yuan, G. Lu and F. Zhao. 2008. Expression of Secreted His-Tagged S-adenosylmethionine Synthetase in the Methylotrophic Yeast Pichia pastoris and Its Characterization, One-Step Purification, and Immobilization. Biotechnol. Prog. 24: 214-220 Maidak B. L., J. R. Cole, C. T. Parker, Jr, G. M. Garrity, N. Larsen, B. Li, T. G. Lilburn, M. J. McCaughey, G. J. Olsen, R. Overbeek, S. Pramanik, T. M. Schmidt, J. M. Tiedje and C. R. Woese. 1999. A new version of the RDP (Ribosomal Database Project) . Nucleic Acids Res. 27: 171–173 Markham G. D. and M. A. Pajares. 2009. Structure-function relationships in methionine adenosyltransferases. Cell. Mol. Life Sci. 66: 636 – 648. Markham G. D., E. W. Hafher, C. W. Tabor and H. Tabor. 1980. S-Adenosylmethionine synthetase from Escherichia coli. J. Biol. Chem. 255: 9082-9092. Martin, D.D., R. A. Ciulla and M. F. Roberts. 1999. Osmoadaptation in archaea. Appl. Environ. Microbiol. 65: 1815-1825. Martinez-Chantar, M. L. and M. A. Pajares. 2000. Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. Eur. J. Biochem. 267: 132 – 137. Mathrani I. M. , D. R. Boone, M. A. Mah. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50: 140–143. Mato, J. M., L. Alvarez, P. Ortiz and M. A. Pajares. 1997. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol. Ther. 73: 265–280 Mato, J. M., J. Cámara, J. Fernández de Paz, L. Caballeria, S. Co11, A. Caballero, L. García-Buey, J. Beltran, V. Benita, J. Caballeria, R. Solà, R. Moreno-Otero, F. Barrao, A. Martín-Duce, J. A. Correa, A. Parés, E. Barrao, I. García-Magaz, J. L. Puerta, J. Moreno, G. Boissardg, P. Ortiz and J. Rodés. 1999. S-Adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. Hepatology. 30:1081-1089. Matos, J. R., F. M. Raushel, C. H. Wong. 1987 S-adenosylmethionine: studies on chemical and enzymatic synthesis. Biotechnol Appl Biochem. 9: 39-52. McCoy, J. G., L. J. Bailey, Y. H. Ng, C. A. Bingman, R. Wrobel, A. P. M. Weber, B. G. Fox and G. N. Phillips Jr. 2008. Discovery of sarcosine dimethylglycine methyltransferase from Galdieria sulphuraria. Pro. Struct. Funct. Bioinfo.74: 368-377. McQueney, M. S. and G. D. Markham. 1995. Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition. J. Biol. Chem. 270: 18277–18284. Mevarech, M., H. Eisenberg, and E. Neumann. 1977. Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 1. Purification and molecular characterization. Biochemistry 16: 3781-3785. Nishimura S, Taya Y, Kuchino Y, Oashi Z 1974. Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli phenylalanine transfer RNA: transfer of the 3-amino-acid-3-carboxypropyl group from S-adenosylmethionine. Biochem Biophys Res Commun 57:702–708. Nyyssölä, A., and M. Leisola. 2001. Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch. Microbiol. 176:294-300. Paulsen, M. and A. C. Ferguson-Smith. 2001. DNA methylation in genomic imprinting, development, and disease. J Pathol. 195: 97–110. Peters, P., E. A. Galinski, H. G. Trüper. 1990. The biosynthesis of ectoine. FEMS Microbiol. Lett. 71:157-162 l1 Poel, B. V., I. Bulens, P. Lagrain, J. Pollet, M. L. A. T. M. Hertog, J. Lammertyn, M. P. De Proft, B. M. Nicolai, A. H. Geeraerd. 2010. Determination of S-Adenosyl-l-methionine in Fruits by Capillary Electrophoresis Phytochemical Analysis. Phytochem Anal. 21: 602–608. Pollard, A. and R. G. Wyn Jones. 1979. Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta. 144:291-298. Raymond, J., O. Zhaxybayeva, J. P. Gogarten, S. Y. Gerdes, R. E. Blankenship. 2002. Whole-genome analysis of photosynthetic prokaryotes. Science. 298: 1616-1620 Roberts M. F. 2000. Osmoadaptation and osmoregulation in archaea. Front Biosci 5: 796–812. Roberts, M. F., M. -C. Lai and R. P. Gunsalus. 1992. Biosynthetic pathways of the osmolytes N-acetyl-beta-lysine, beta-glutamine, and glycine betaine in Methanohalophilus strain FDF1 suggested by Nuclear Maganetic Resonance Analyses. J. Bacteriol. 174: 6688-6693. Rujan, T. and W. Martin. 2001. How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 17: 113–120 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory mannual, 2nd edition, Cold Spring Laboratory. Cold Spring Harbor, New York. Schröder G, J. Eichel, S. Breinig, J. Schroder. 1997. Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization. Plant Mol Biol 33: 211–222. Sánchez-Pérez, G. F., M. Gasset, J. J. Calvete and M. A. Pajares. 2003. Role of an intrasubunit disulfide in the association state of the cytosolic homooligomer methionine adenosyltransferase. J. Biol. Chem. 278: 7285–7293. Sánchez-Pérez G. F., J. M. Bautista and M. A. Pajares. 2004. Methionine Adenosyltransferase as a Useful Molecular Systematics Tool Revealed by Phylogenetic and Structural Analyses. J. Mol. Biol. 335: 693–706. Setati M. E. 2010. Diversity and industrial potential of hydrolaseproducing halophilic/halotolerant eubacteria. Afr. J. Biotechnol. 9:1555-1560. Sleator R. D., C. Hill. 2001. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26: 49–71. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-17. Sowers, K. R., and R. P. Gunsalus. 1995. Halotolerance in Methanosarcina spp.: Role of Nε-acetyl-β-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl. Environ. Microbiol. 61:4382-4388. Sufrin JR, Finckbeiner S, Oliver CM. 2009. Marine-derived metabolites of S-adenosylmethionine as templates for new antiinfectives. Mar Drugs 7:401–434 Takusagawa, F., S. Kamitori and G. D. Markham. 1996. Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry. 35: 2586–2596. Takusagawa, F., S. Kamitori, S. Misaki, and G. D. Markham. 1996. Crystal Structure of S-Adenosylmethionine Synthetase. J. Biol.Chem. 271: 136–147. Taylor, J. C., F. Takusagawa and G. D. Markham. 2002. The active site loop of S-adenosylmethionine synthetase modulates catalytic efficiency. Biochemistry. 41: 9358–9369. Taylor, J. C. and G. D. Markham. 1999. The Bifunctional Active Site of S-Adenosylmethionine Synthetase. J. Biol. Chem. 274, 32909–32914. Thomas, D., and Y. Surdin-Kerjan. 1997. Metabolism of Sulfur Amino Acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61: 503–532. Todd A. E., C. A. Orengo and J. M. Thornton. 2002. Plasticity of enzyme active sites. Trends Biochem. Sci. 27: 419–426. Van de Peer, Y., S. L. Baldauf, W. F. Doolittle and A. Meyer. 2000. An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J. Mol. Evol. 51: 565–576. Ventosa, A., J. J. Nieto and A. Oren. 1998. Biology of Moderately Halophilic Aerobic Bacteria. Microbiol. Mol. Biol. Rev. 62: 504-544 Waditee, R., Y. Tanaka, K. Aoki, T. Hibino, H. Jikuya, J. Takano, and T. Takabe. 2003. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J. Biol. Chem. 278:4932-42. Wahl, G. M., M. Stern, and G. R. Stark. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. 76:3683-7. Wang, Y. C. and E. I. Chiang. 2012. Low-Dose Methotrexate Inhibits Methionine S-Adenosyltransferase In Vitro and In Vivo. Mol. Med. 1 8 : 4 2 3 - 4 3 2. Wicher, V., R. E. Baughn, C. Fuentealba, J. A. Shadduck, F. Abbruscato and K. Wicher. 1991. Enteric infection with an obligate intracellular parasite, Encephalitozoon cuniculi, in an experimental model. Infect. Immun. 59: 2225–2231. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882-2886. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero. 1982. Living with water stress: evolution of osmolytes systems. Science 217: 1214-1222. Zaccai, G. E, Wachtel. and H. Eisenberg. 1986. Solution structure of halophilic malate dehydrogenase from small-angle neutron and X-ray scattering and ultracentrifugation. J. Mol. Biol. 190: 97-106. Zomorodipour, A. and S. G. Andersson. 1999. Obligateintracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Letters: 452: 11–15. Zulty J. J. and M. K. Speedie. 1989. Purification and Characterization of S-Adenosylhomocysteine Deaminase from Streptonigrin-Producing Streptomyces flocculus. J. Bacteriol. 169:5575- 5578.
摘要: 
S-腺苷甲硫胺酸合成酶(S-adenosylmethionine synthetase, SAMS)會將甲硫胺酸和ATP催化生成細胞中主要的甲基提供者S-腺苷甲硫胺酸(S-adenosylmethionine, SAM)。高鹽甲烷太古生物Methanohalophilus portucalensis FDF1T 可以從胞外攝取甜菜鹼或是以SAM作為甲基提供者將Glycine三次甲基化自體生合成甜菜鹼,在胞內累積作為相容質以平衡胞內外滲透壓。經由南方墨點法、M. portucalensis FDF1T metagenomic sequence資料與比較基因體分析發現M. portucalensis FDF1T有兩套不同型的sams基因,Mpsams1和Mpsams2,其中Mpsams1位於glycine betaine生合成基因組的上游。由序列分析得知催化活性相關的胺基酸和功能區塊與其他物種的SAMS有高度的相似性,推測兩套SAMS皆有催化生成SAM的活性。進一步序列比對與結構預測分析發現MpSAMS2在和phosphate binding,Mg2+ binding、K+ binding的主要保守性胺基酸與Mpsams1不同,且這些取代胺基酸在太古生物中具高度保守性。進一步演化歸群分析將MpSAMS1與細菌和真核SAMS歸群在一起,MpSAMS2則和其他太古生物的SAMS歸群在一起,顯示MpSAMS1可能藉由水平傳播的方式獲自其他物種,而MpSAMS2則是由太古生物的祖先垂直傳播來的。

S-adenosylmethionine synthetase (SAMS, EC 2.5.1.6) can catalyse the formation of S-adenosylmethionine which is the major methyl donor from methionine and ATP. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1T can de novo synthesis glycine betaine by stepwise methylation of glycine by using SAM as the methyl donor. Metagenomic and comparative genomics analysis of genus Methanohalophilus revealed there are two sams genes. One of them located up stream of glycine betaine synthesizing gene cluster, named Mpsams1. The complete gene of Mpsams1 was cloned by Southern hybridization. The other sams were amplified from FDF1T chromosome DNA by PCR according to FDF1T metagenomic pyrosequencing databse, named Mpsams2. Amino acid sequence analysis and homology modeling structure of these two MpSAMS exhibit conserved methionine binding site, ATP binding site, Mg2+ and K+ binding site with other species, suggesting both possess catalytic activities of SAM formation. Sequence alignment and putative structure revealed MpSAMS2 displayed the amino acid substitution for the phosphate binding,Mg2+ binding、K+ binding sites which were important for SAMS activity in E. coli. However, these substitutions are conserved among archaeal SAMS. Phylogenetic analysis revealed MpSAMS1 was clustered with SAMS from eukaryote and bacteria, whereas MpSAMS2 was clustered with SAMS from archaea. We hypothesized that MpSAMS1 were horizontally transfered from bacteria, whereas MpSAMS2 were vertically obtained from archaeal ancestor.
URI: http://hdl.handle.net/11455/81167
其他識別: U0005-2808201214485200
Appears in Collections:生命科學院

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.