Please use this identifier to cite or link to this item:
標題: 具有積體化變壓器技術之射頻接收器前端電路
RF Receiver Frond-end Circuits with a Integrated Transformer Technique
作者: 吳宗展
Wu, Tsung-Chan
關鍵字: 壓控振盪器;vco;低雜訊放大器;變壓器;lna;transformer
出版社: 電機工程學系所
引用: [1] B. Razavi, RF Microelectronics, Prentice Hall, 1998. [2] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed., Boston: McGraw-Hill, 1999. [3] K. L. Fong, R. G. Meyer, “Monolithic RF active mixer design,” IEEE Transactions on Circuits and Systems-II Analog and Digital Signal Processing, vol. 46, no. 3, March 1999. [4] A. Zolfaghari, B. Razavi, “A low-power 2.4-GHz transmitter/receiver CMOS IC,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 176-183, Feb. 2003. [5] C. Patrick and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC's,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 743-752, MAY 1998. [6] Y.-T. Chang, “A GFSK Modulator by Using a Fractional-N Frequency Synthesizer”, M. S. thesis, National Taiwan University, 2003. [7] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966. [8] J.J. Rael, A.A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000. [9] T. H. Lee, A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 326-336, March 2000. [10] B.-Y. Sze and C.-L. Ho, VIA Technologies, Inc., Taipei, Taiwan, “A Low Phase Noise Quadrature LC VCO in CMOS Technology”, IEEE Radio Frequency Integrated Circuits Symposium, 2005. [11] E. Hegazi, H. Sjoland, A.A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1921-1930, Dec. 2001. [12] B. Razavi, “Design of integrated circuits for optical communications,” McGraw-Hill, 2003. [13] A.Rofougaran, J.Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in Int. Solid-State Circuit (ISSCC) Dig. Tech. Papers, pp. 392-393, Feb. 1996. [14] Hye-Ryoung Kim, Choong-Yul Cha, Seung-Min Oh, Moon-Su Yang, Sang-Gug Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 952-955, June 2004. [15] Jong-Phil Hong, Seok-Ju Yun, Nam-Jin Oh, Sang-Gug Lee, “A 2.2-mW Backgate Coupled LC Quadrature VCO with Current Reused Structure,” IEEE Microwave wireless components letters, pp. 298-300, April 2007. [16] K. Kwok and H. C. Luong, “Ultra-Low-Voltage High-Performance CMOS VCOs Using Transformer Feedback,” IEEE Journal of Solid-State Circuits, Vol. 40, pp. 652-660, March 2005. [17] Jri Lee, “A 3-to-8-GHz Fast Hopping Frequency Synthesizer in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 566-573, March 2006. [18] A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel, and L. R. Carley, “An optimally transformer coupled, 5GHz quadrature VCO in a 0.18-μm digital CMOS process,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 141-144, Jun. 2003. [19] Ching-Yuan Yang, Meng-Ting Tsai, “A Voltage-Controlled Varactorless LC-Tank Oscillator With a Transformer-Feedback Technique,” Microwave and Optical Technology Letters, vol.49, no.11, pp. 2808-2810, November 2007. [20] A. Ravi, K. Soumyanath, L. R. Carley, R. Bishop, “An integrated 10/5GHz injection-locked quadrature LC VCO in a 0.18um digital CMOS process,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), pp. 543-546, 2002. [21] W. D. Cock and M. Steyaert, “A CMOS 10GHz voltage controlled LC-oscillator with integrated high-Q inductor,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), pp. 498-501, 2001. [22] N.-J. Oh and S.-G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microwave Wireless Compon. Letters, vol. 15, no. 11, pp. 733-735, Nov. 2005. [23] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave Wireless Compon. Letters, vol. 13, no. 10, pp. 446-448, Oct. 2003. [24] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998. [25] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 745-759, May 1997. [26] T. H. Lee, “The design of narrowband CMOS low-noise amplifier,” Stanford University Center for Integrated Systems Stanford, California, USA. [27] G.. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, Prentice-Hall, 1997. [28] H. Samavati, H. R. Rategh, T. H. Lee, “A 5-GHz CMOS wireless LAN receiver front end,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 765-772, May 2000. [29] T. Yeung, “Analysis and Design of On-chip Spiral Inductors and Transformers for Silicon RF Integrated Circuits,” M. S. thesis, HKUST, 1998. [30] P. Andreani, “A 1.8-GHz Monolithic CMOS VCO Tuned by an Inductive Varactor,” IEEE International Symposium on Circuits and Systems, Vol. 4, pp. 714 -717, May 2001. [31] R. -C. Liu, K. -L. Deng, and H. Wang, “A 0.6-22 GHz broadband CMOS distrubuted amplifier,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 103-106, Jun. 2003. [32] C. -W. Kim et al., “An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 544-547, Feb. 2005. [33] A. Ismail and A. Abidi,“A 3-10-GHz Low-Noise Amplifier with wideband LC-Ladder matching network”, IEEE Journal of Solid-State Circuits , vol. 39, pp. 2269-2277, Dec. 2004. [34] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6GHz wireless receivers,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 2259-2268, Dec.2004. [35] El-Gharniti, O.; Kerherve, E.; Begueret, J.-B.; Belot, D.“3~5-GHz SiGe UWB LNA Using On-Chip Transformer for Broadband Matching,” Solid-State Circuits Conference, pp. 255-258, Sept. 2006. [36] T. Song, S. Ko, D.-H. Cho, H. -S. Oh, C. Chung, and E. Yoon, “A 5 GHz transformer-coupled CMOS VCO using bias-level shifting technique,”in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 127-130, Jun. 2004. [37] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE Journal of Solid-State Circuits Vol. 25, No.8, pp. 1019-1022, Aug. 1990. [38] H. O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE Journal of Solid-State Circuits, Vol. 33, pp. 295-299, Feb. 1998. [39] M. Mansuri, D. Liu and C. K. Ken Yang, “Fast frequency acquisition phase-frequency detectors for GSamples/s phase-locked loops,” IEEE Journal of Solid-State Circuits, Vol. 37, pp. 1331-1334, Oct. 2002. [40] S. O. Jeon, T. S. Cheung and W. Y. Choi, “Phase/frequency detectors for high-speed PLL applications,” Electronic Letters, Vol. 34, pp. 2120-2121, Oct. 1998.
最後一部份將探討頻率合成器的設計,其輸出頻率範圍2.3GHz~2.6GHz,工作電壓為1.8V時的功率消耗為13mW。本晶片以0.18μm CMOS製程製造,面積為1.1mm×0.785mm。

This thesis describes the feasibility study of inductive varactor realized with integrated transformer and applies it in quadrature VCO and low noise amplifier circuits. There are three major parts in this thesis discussed in detail.
Firstly, the basic structures of the RF receiver and efficiency parameter are introduced and analysized, then are state the definition of the efficiency parameters of the receiver. Secondly, discussed the traditional LC VCO applied capacitive varactors and its disadvantages. The thesis proposed the concept of inductive varactor. The proposed structures employ integrated transformers as inductance with voltage-controlled value. The traditional approach of tuning the VCO oscillation frequency by capacitance variation would be sacrificed, and the proposed structure with induction variation will be applied to substitute for quadrature VCO and low noise amplifier.
The last part of all, the work presents the frequency synthesizer. The output frequency ranges from 2.3GHz to 2.6GHz. It consumes 13mW from a 1.8V power supply. The chip is implemented in 0.18μm CMOS technology with the die area 1.1mm×0.785mm.
其他識別: U0005-1808200819124600
Appears in Collections:電機工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.