Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8180
標題: 射頻子電路設計和九十奈米電晶體特性研究
RF Sub-Circuits Design and 90-nm CMOS Transistor Characterization
作者: 李泰興
Lee, Tai-Hsing
關鍵字: RF sub-circuits;射頻電路;inductive feedback network;CPW line;Wide-band LNA;milli-meter wave frequency;noise matching;電感迴授;共面波導傳輸線;寬頻低雜訊放大器;毫米微波頻率;雜訊匹配
出版社: 電機工程學系所
引用: [1]RNCOS. Emerging Mobile Wireless Technologies -- Road to a Wireless World. 2005. [2]WiMedia Alliance Home Page. [Online] http://www.wimedia.org/. [3]R. Lai et al. “Sub 50nm InP HEMT Device with Fmax Greater than 1 THz,” Digest of IEEE IEDM, pp. 609-611, Dec. 2007. [4]Y. Baeyens, R. Pullela, J. P. Mattia, H.-S. Tsai, and Y.-K. Chen, “A 74-GHz bandwidth InAlAs/InGaAs-InP HBT distributed amplifier with 13-dB gain,” IEEE Microwave Guided Wave Lett., vol. 9, pp. 461-463, Nov. 1999. [5]K. W. Kobayashi et al., “A 50-MHz-55-GHz multidecade InP-based HBT distributed amplifier,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 353-355, Oct. 1997. [6]R. -C. Liu, K. -L. Deng, and H.Wang, “A 0.6-22 GHz broadband CMOS distributed amplifier,” IEEE Radio Frequency Integrated Circuits Symp., pp. 103-106, June 2003. [7]R.-C. Liu, C.-S. Lin , K.-L. Deng and H. Wang “A 0.5-14 GHz 10.6-dB CMOS cascade distributed amplifier,” IEEE VLSI Circuits Symp. Dig., pp. 139-140, 2003. [8]A. Bevilacqua and A. M. Niknejad, “An ultra-wide-band CMOS low noise amplifier for 3.1 to 10.6-GHz wireless receiver,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004. [9]J. F. Kukielka et al., “Silicon bipolar fixed and variable gain amplifier MMICs for microwave and lightwave applications up to 6 GHz,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 109-112, June 1989. [10]F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004. [11]C. F. Liao and S. I. Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol.42, no. 2, pp. 329-339, Feb. 2007. [12]S. J. Fang, et al., “A 2 GHz CMOS even harmonic mixer for direct conversion receivers,” IEEE ISCAS, pp. 807-810, 2002. [13]L. Sheng, et al., “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE JSSC, vol. 35, no. 9, pp. 1329-1337, Sept. 2000. [14]D. A. Johnson, et al., “A packaged SiGe x2 sub-harmonic mixer for U-NII band applications,” IEEE BCTM, pp. 159-162, 2001. [15]C-C Ho, G-H Liang, C-F Huang, Y-J Chan, C-S Chang, and C-P Chao, “VCO Phase-Noise Improvement by Gate-Finger Configuration of 0.13-μm CMOS Transistors,” IEEE Electron Devices Lett., vol. 26, no. 4, pp. 258-260, April 2005. [16]E. Hegazi, H. Sjoland, and A.A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol.36, no.12, pp.1921-1930, Dec. 2001. [17]T. Skotnicki, M. Jurczak, J Martins, M. Paoli, B. Tormen, R. Pantel, C. Hemandez, I. Campidelli, E. Josse, G. Ricci and J. Galvier, “Well-controlled selectively under-etched Si/SiGe gates for RF and high performance CMOS,” Symp. VLSI Tech Dig., pp. 156-157, 2000. [18]P. R. de la Houssaye, C. E. Chang, B. Offord, G. Imthurn, R. Johnson, P. M. Asbeck, G. A. Garcia, I. Lagnado, “Microwave performance of optically fabricated T-gate thin film silicon-on-sapphire based MOSFET's,” IEEE Electron Device Lett., vol. 16, pp. 289-292, 1995. [19]T. Ohguro, H. Naruse, H. Sugaya, S. Nakamura, E. Morifuji, H. Kimijima, T. Yoshitomi, T. Morimoto, H. S. Momose, Y. Katsumata and H. Iwai, “High performance RF characteristics of raised gate/source/drain CMOS with Co salicide,” Symp. VLSI Tech. Dig., pp 136-137, 1998. [20]T. Ohguro, R. Hasumi, T. Ishikawa, M. Nishigori, H. Oyamatsu and F. Matsuoka, “An epitaxial channel MOSFET for improving flicker noise under low supply voltage,” Symp. VLSI Tech. Dig., pp. 160-161, 2000. [21]Y. Hoshino, M. Morikawa, S. Kamohara, M. Kawakami, T. Fujioka, Y. Matsunaga, Y. Kusakari, S. Ikeda, I. Yoshida and S. Shimizu, “High performance scaled down Si LDMOSFET with thin gate bird's beak technology for RF power amplifier,” Proc. IEDM, pp. 205-208, 1999. [22]D. C. Shaver, “Microwave operation of submicrometer channel-length silicon MOSFET's,” IEEE Electron Device Lett., vol. 6, pp. 36-39, 1984. [23]E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, H. Kimijima, F. Matsuoka, M. Kinugawa, Y. Katsumata and H. Iwai, “Future perspective and scaling down roadmap for RF CMOS,” Symp. VLSI Tech. Dig., 1999, pp. 163-164. [24]J. N. Burghartz, M. Hargrove, C. S. Webster, R. A. Groves, M. Keene, K. A. Jenjins, R. Logan and E. Nowak, “RF potential of a 0.18-μm CMOS logic device technology,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 864-870, April 2000. [25]H. Hasegawa, M. Furukawa, and Yanai H., “Properties of Microstrip Line on Si-SiO2 System,” IEEE Trans. Microwave Theory and Techniques, Vol. 19, pp.869-881, Nov., 1971. [26]S. Zaage, E. Groteluschen, “Characterization of the broadband transmission behavior of interconnections on silicon substrates,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 16, pp. 686-691, Nov., 1993. [27]B. Kleveland, C.H. Diaz, D. Vook, L. Madden, T.H. Lee, and S.S. Wong, “Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design,” IEEE J. of Solid-State Circuits, Vol. 36, pp. 1480-1488, Oct., 2001. [28]S. Seki, and H. Hasegawa, “Cross-tie slow-wave coplanar waveguide on semi-insulating GaAs substrates,” Electronics Letters, Vol. 17, pp. 940-941, Dec., 1981. [29]I.C.H. Lai, and M. Fujishima, “High-Q Slow-Wave Transmission Line for Chip Area Reduction on Advanced CMOS Processes,” IEEE International Conf. of Microelectronic Test Structures, pp. 192-195, Mar., 2007. [30]T. S. D. Cheung, and J. R. Long, “Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. of Solid-State Circuits, Vol. 41, pp. 1183-1200, May, 2006. [31]FCC 04-48 “First Report and Order in the Matter of Revision of Part 15 of the Commission's Rules Regarding Ultra-wideband Transmission Systems,” Feb.14, 2002. [32]G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Mag., vol. 4, pp. 36-47, Feb. 2003. [33]K. Siwiak, “Ultra-wide band radio: Introducing a new technology,” in Proc. IEEE Vehicular Technology Conf., pp. 1088-1093, 2001. [34]http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf. [35]Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001. [36]F. T. Chien and Yi-Jen Chan., “Bandwidth enhancement of transimpedance amplifier by a capacitive-peaking design,” IEEE J. Solid-State Circuits, vol. 34, pp. 1167-1170, Aug. 1999. [37]M. Abraham, “Design of Butterworth-type transimpedance and, bootstrap-transimpedance pre-amplifiers for fiber-optic receivers,” IEEE Trans. Circuits Syst., vol. 29, no. 6, pp. 375-382, 1982. [38]A. A. Ketterson, J. W. Seo, M. H. Tong, K. L. Nummila, J. J. Morikuni, K. Y. Cheng, S. M. Kang, and I. Adesida, “A MODFET-Based optoelectronic integrated circuit receiver for optical interconnects,” IEEE Trans. Electron Devices, vol. 40, no. 8, pp. 1406-1416, 1993. [39]S. S. Lu, C. C. Meng, T. W. Chen, and H. C. Chen, “A novel interpretation of transistor S-parameters by poles and zeros for RF IC circuit design,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 406-409, Feb. 2001. [40]H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, Vol. 32, pp. 419-422, July 1944. [41]ATN Microwave Corporation, NP5 Noise Parameter and Sparameter Test System, Users Guide, Aug. 1999. [42]Behzad Razavi, “RF Microelectronics,” Upper Saddle River, New Jersey: Prentice Hall, 1998. [43]Chao-Shiun Wang and Chorng-Kuang Wang, “A 90-nm CMOS Low Noise Amplifier Using Noise Neutralizing for 3.1-10.6GHz UWB System,” IEEE ESSCIRC, pp. 251-254, Sept. 2006. [44]Jongsoo Lee and Cressler, J. D., “A 3-10 GHz SiGe Resistive Feedback tow Noise Amplifier for UWB Applications,” IEEE Radio Frequency Integrated Circuits Symp., pp. 545-548, June 2005. [45]H. Samavati, et al., “A 5GHz CMOS wireless LAN receiver front end,” IEEE JSSC, vol. 35, no. 5, pp. 765-772, May 2000. [46]T. P. Liu, et al., “5-GHz CMOS radio transceiver front-end chipset,” IEEE JSSC, vol. 35, no. 12, pp. 1927-1933, Dec. 2000. [47]B. Gilbert, “The Micromixer: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE JSSC, vol. 32, pp. 1412-1423, Sept. 1997. [48]J. Crols et al., “A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE JSSC, vol. 30, no. 12, pp. 1483-1492, Dec. 1995. [49]C.C. Meng, et al., “A High Isolation Downconversion Micromixer Using 0.18-μm Deep N-well CMOS Technology,” IEEE RFIC Sym., pp. 619-622, 8-10 June 2003. [50]Jin-Young Choi, Sang-Gug Lee, “A Low-Noise, High-Gain Single-Ended Input Double-Balanced Mixer,” Journal of Analog Integrated Circuits and Signa Processing, vol. 36, no. 3, pp. 263-266, Sep. 2003, Springer Science. [51]Fariborz Assaderaghi, Dennis Sinitsky, Stephen Parke, Jeffery Bokor, Ping K. Ko, and Chenming Hu, “A Dynamic Threshold Voltage MOSFET(DTMOS) for Ultra-Low Voltage Operation,” IEEE IEDM, pp.809-812.1994. [52]Theodore W. Houston, “A Novel Dynamic Vt Circuit Configuration,” IEEE SOI Conference, pp.154-155, 1997. [53]In-Young Chung, Young-June Park, and Hong-Shick Min, “A New SOI Inverter for Low Power Applications,” IEEE SOI Conference, pp.20-21, 1996. [54]Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer, “Analysis and Design of Analog Integrated Circuits,” John Wiley&Sons, 4th Edition, 2001. [55]A.M. Mangan, S.P. Voinigescu, M.-T. Yang, and M. Tazlauanu, “De-embedding transmission line measurements for accurate modeling of IC designs,” IEEE Trans. Electron Devices, vol. 53, pp.235-241, Feb., 2006. [56]H. Darabi and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE TRANSACTIONS ON SOLID STATE CIRCUITS, vol. 35, no. 1, pp. 15-25, Jan. 2000. [57]A. Rofougaran, J. Y.-C. Chang, M. Rofougaran, and A. A. Abidi, “A 1 GHz CMOS RF front-end IC for a direct-conversion wireless receiver,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 880-889, 1996. [58]H. M. Hsu, J. Y. Chang, J. G. Su, C. C. Tsai, S. C. Wong, C. W. Cheng, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18 μm foundry RF CMOS technology with 70 GHz ft for single chip system solutions,” IEEE Symp. Microwave Theory and Techniques, 2001, pp. 1869-1872. [59]K. Bult, “Device issues in the integration of analog/RF functions in deep submicron digital CMOS,” IEDM Tech. Dig., 1999, pp. 423-426. [60]United Microelectronics Corporation, http://www.umc.com/. [61]Thomas H. Lee, "The design of CMOS Radio-Frequency Integrated Circuits," Cambridge University Express, 1998. [62]K. Joardar, “A simple approach to modeling cross-talk in integrated circuits,” IEEE Journal of Solid-State Circuits, vol. 29, no. 10, pp. 1212-1219, Oct. 1994. [63]X. Jin, J-J Ou, C-H Chen, W. Liu, M. J. Deen, P. R. Gray, and C. Hu, “An Effective Gate Resistance Model for CMOS RF and Noise Modeling,” IEEE IEDM, pp.961-914.1998. [64]S. J. Mason, “Power gain in feedback amplifiers,” IRE Transactions on Circuit Theory, vol. CT-1, pp. 20-25, June 1954. [65]F. Schwierz and J. J. Liou, “Modern Microwave Transistors,” John Wiley & Son, 2003. [66]Y. Tsividis, “Operation and modeling of the MOS transistor,” McGraw-Hill Co., 2nd edition, Singapore, 1999. [67]S. H. Jen, C. Enz, D. R. Pehlke, M. Schroter, and B. J. Sheu, “Accurate MOS transistor modeling and parameter extraction valid up to 10-GHz,” IEEE Trans. Electron Devices, vol. 46, pp. 2217-2227, Nov. 1999. [68]J-G Su, S-C Wong and C-Y Chang, “An investigation on RF CMOS stability related to bias and scaling,” Solid-State Electronics, vol 46, no. 4, pp. 451-458, April 2002. [69]J. H. Huang, Z. H. Liu, M. C. Jeng, P. K. Ko, and C. Hu, “A physical model for MOSFET output resistance,” IEDM Tech. Dig., 1992, pp. 569-572. [70]T. Manku, “Microwave CMOS-Device physics and design,” IEEE J. Solid-state Circuits, vol. 34, no.3, pp.277, March 1999. [71]Y. Lin, L. Wang, M. Obrecht, and T. Manku, “Quasi-3D Device Simulation for Microwave Noise Characterization of MOS Devices,” IEDM Tech. Dig., 1998, pp. 77-80. [72]H-W Chiu, S-S Lu and Y-S Lin, “A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 53, no. 3, pp. 813-824, March 2005. [73]K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 654-665, Mar. 1990. [74]George D. Vendelin, Anthony M. Pavio and Ulrich L. Rohde, “Microwave Circuit Design Using Linear and Nonlinear Techniques,” Wiley Interscience, 2nd edition, 2005. [75]Eduard Sackinger, “Broadband Circuits for Optical Fiber Communication,” Wiley Interscience, 2005. [76]A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 33, no. 2, pp. 179-194, Feb. 1998. [77]E. Hegazi and A. A. Abidi, “Varactor Characteristics, Oscillator Tuning Curves, and AM-FM Conversion,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 38, no. 6, pp. 1033-1039, June 2003. [78]B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad, “Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS,” IEEE J. of Solid-State Circuits, Vol. 42, pp. 2893-2903, Dec., 2007. [79]D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery,“Full copper wiring in a sub-m CMOS ULSI technology,” in Proc. IEDM, pp. 773-776, 1997. [80]C. C. Wu, et al., “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” IEDM Tech. Dig., 2002, pp. 65-68. [81]Agilent control software. (http://www.agilent.com) [82]M.H. Cho et al., “A novel cascade-based de-embedding method for on-wafer microwave characterization and automatic measurement,” in IEEE Radio Frequency integrated Circuits Symposium, 2005. Digest of Papers, pp.303 -306, June 2005. [83]David M. Pozar, “Microwave Engineering,” Wiley, Sept., 2004. [84]W.R. Eisenstadt, and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 15, pp.483-490, Aug., 1992. [85]K.C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip lines and slotlines,” Artech House Publishers, Mar., 1996. [86]B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 268-276, March 1999.
摘要: 
CMOS技術毫無疑問已經佔據了相當大的通訊市場,尤其所擁有的系統高整合度、低成本以及低功率消耗正是它席捲射頻電路領域的最佳利器。最近十年來資料網路和電話系統皆往更高的傳輸資料量發展,雖然可透過各種先進的調變機制來增加資料量傳輸,但日益擁擠的頻段漸漸不敷使用,因此近幾年及未來的研究均朝向更高的載波頻段或多輸入輸出傳送機制邁進,因此操作於更高頻率下的電路以及元件設計便顯得越趨重要。有鑒於CMOS製程技術的蓬勃發展,毫米微波CMOS電路被預期將是下一階段高資料傳輸的最佳技術之ㄧ。
本論文分為兩大部分,第一部分我們提出了三種可以改良射頻電路的技術,包含了在寬頻低雜訊放大器電路當中加入電感迴授機制來達到雜訊削減的作用,利用此技術並且還可以增加其工作頻寬。再來提出一種可以增加隔離度的次偶諧波混頻器,除此之外,這種電路技術可以將本地震盪器的設計頻率大大的降低一半以減低毫米微波設計的困難度。最後提出一種可以增加直流及射頻特性的動態調整臨界電壓電晶體,利用此改良電晶體取代現有的負電阻產生器來改善壓控震盪器的相位雜訊。
第二部份將討論不同佈局下電晶體常見的射頻特性差異,這將幫助我們了解對於不同的射頻電路寄生效應有不同的影響,也就是說不同的射頻電路在使用電晶體時將會有不同的佈局選擇,並且也提出一種有別於傳統雜訊匹配的方法。在被動元件方面,提出一種浮接屏閉式共面波導傳輸線,它可以提供比傳統共面波導傳輸線更低的傳輸損失,這將可以改善信號在毫米微波頻率傳遞下的衰減量。最後我們總結論文成果以及未來可以延伸的研究。

Clearly, the CMOS technology dominates the huge amount of communication markets. The reasons that CMOS is considerably popular include high integration ability, low cost, and low power. To provide more divers mediate information in the data-communication and telecom systems, it exploits the advance modulation skills to transmit data in the limited channel capacity. However, the congestion of spectrum has been getting worse even though it uses these modulation techniques. Therefore, operating toward high carrier frequency or using MIMO (Multi Input Multi Output) techniques will be promising in the future. On the other hand, the characterizations of devices and the excellent circuit designs in the high frequency are essential to implement the whole communication system successfully.
The dissertation is composed of circuit and device parts. On the circuit side, it demonstrates three techniques to improve the performances of RF sub-circuits such as noise figure of low noise amplifier (LNA), isolation of Mixer and phase noise of voltage control oscillator (VCO). The first circuit, LNA, with inductive feedback network is demonstrated to reduce the noise figure and extend the bandwidth. Moreover, the wide-band LNA just only uses an inductor to save the chip area. Next, the even harmonic mixer is designed to increase the LO-RF isolation with half local oscillator frequency. It can ease the design requirement of millimeter-wave oscillator. Lastly, a novel DT-MOS transistor whose DC and RF performances are more excellent than the standard MOSFET is proposed. Using the proposed DT-MOS replaces the cross-couple pairs of VCO not to reduce the phase noise but also keep the same power consumption and chip area.
On the device side, the RF characteristics of MOSFETs, the cut-off frequency (ft), maximum oscillation frequency (fmax), stability factor frequency (fk), minimum noise figure (NFmin), noise matching and flicker noise, affected by the secondary effects are investigated with the identical total transistor size. Based on these results, it is also helpful to give some guidelines for RF circuit designers. Moreover, a new noise matching method different from traditional one is also proposed. In addition to the active device, the floating shield CPW transmission line is proposed. The CPW line achieves low loss than traditional one in the millimeter-wave. Finally, these works and extensions of the dissertation will be summarized.
URI: http://hdl.handle.net/11455/8180
其他識別: U0005-2001200909332600
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.