Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8291
DC FieldValueLanguage
dc.contributor蘇育全zh_TW
dc.contributor許舜斌zh_TW
dc.contributor.advisor陳正倫zh_TW
dc.contributor.author翁精邦zh_TW
dc.contributor.authorWeng, Ching-Pangen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:41:20Z-
dc.date.available2014-06-06T06:41:20Z-
dc.identifierU0005-2108200822331700zh_TW
dc.identifier.citation[1] R. M. Schaffert, Electrophotography, Halstead Press, New York, 1975. [2] K. Furukawa, K. Shiojima, H. Ishii and T. Ishikawa, “Discharge Characteristics and OPC-drum Charging Characteristics of Separated Saw-tooth Charging Device,” IS&T''s Tenth International Congress on Advances in Non-Impact Printing Technologies, pp. 34-37, 1994. [3] H. Kawamoto, “Ozone Generation in Corona Discharge at Pin Electrode of Electrophotographic Charger,” Journal of Imaging Science and Technology, Vol.44, No.5, pp.452-456, 2000. [4] B. A. Lengyel, Introduction to Laser Physics, John Wiley & Sons, New York, 1966. [5] C.-L. Chen, G. T.-C. Chiu and Jan P. Allebach, “Banding Reduction in EP Processes Using Human Contrast Sensitivity Function Shaped Photoconductor Velocity Control,” Journal of Imaging Science and Technology, Vol.47, No.3, pp.209-223, 2003. [6] P. S. Ramesh, “Simulating Digital Exposure of Xerographic Photoreceptors Using the Domain-Decomposition Method,” IEEE Transactions on Industry Application, Vol.42, No.2, pp.392-398, 2006. [7] S. Jeyadev and D. M. Pal, “Photoconductor Implications in Digital Electrophotography,” Journal of Imaging Science and Technology, Vol.40, No.4, pp.327-333, 1996. [8] H. Sonnenberg, “Laser-Scanning Parameters and Latitudes in Laser Xerography, “Applied Optics, Vol. 21, No. 10, pp.1745-1751, 1982. [9] L. B. Schein, Electrophotography and Development Physics, Laplacian Press, California, 1996. [10] E. J. Gutman, R. S. Naumchick, J. Paxson and A. M. Webb, “Why Does the Tribo Value Appear to be Independent of Toner Concentration in some Two-component Electrophotographic Developers,” Journal of Imaging Science and Technology, Vol.45, No.1, pp.43-52, 2001. [11] E. J. Gutman, M. L. Grande and R. N. Muller, “Comparison of Triboelectric Measurements of Two-component Xerographic Developers with the Continuous and Patchy Charge Models,” Journal of Imaging Science and Technology, Vol.47, No.3, pp.229-238, 2003. [12] R. J. Nash, M. L. Grande and R. N. Muller, “CCA Effects on the Triboelectric Charging Properties of a Two-component Xerographic Developer,” Journal of Imaging Science and Technology, Vol.46, No.4, pp.313-320, 2002. [13] R. Baur and H.-T. Macholdt, “Charge Control Agents and Triboelectrically-adjusted Pigments in Electrophotographic Toner,” Journal of Electrostatics, Vol.40-41, pp.621-626, 1997. [14] J. H. Anderson, “ Effects of Carbon Black on Toner Tribocharging in Two-component Electrophotographic Developers,” Journal of Imaging Science and Technology, Vol.45, No.6, pp.529-536, 2001. [15] H. Mio, Y. Matsuoka, A. Shimosaka, Y. Shirakawa and J. Hidaka, “Analysis of Developing Behavior in Two Component Development System by Large Scale-discrete Element Method,” Journal of Chemical Engineering of Japan, Vol.39, No.11, pp.1137-1144, 2006. [16] H. Kawamoto, “Transport of Carriers in Magnetic Brush Development Process of Electrophotography,” Journal of Imaging Science and Technology, Vol.40, No.2, pp.168-170, 1996. [17] J. Q. Feng and D.A. Hays, “Theory of Electric Field Detachment of Charged Toner Particles in Electrophotography,” Journal of Imaging Science and Technology, Vol.44, No.1, pp.19 -25, 2000. [18] H. Fusayasu, H. Inoue, Y. Komatsu and Y. Sekine, “Analysis for Electrophotographic Process on Digital Copier,” IEEE Transaction on Magnetics, Vol.37, No.5, pp.3440-3443, 2001. [19] K. Ishii, M. Takahashi, H. Nagato, K. Higuchi, M. Hosoya and K. Komata, “2540 dpi Full Color Image Creation with a Liquid Electrophotography System,” IS&T''s NIP19: International Conference on Digital Printing Technologies, pp.9-12, 2003. [20] P. K. C. Pillai, R. C. Ahuja, S. K. Kaura and S. K. Agarwal, “Effect of Binder Content on the Surface Charge Characteristic of Hgl2:Cds Polystyrene Binder Layers,” Photographic Science and Engineering, Vol.20, No.1, pp.39-42, 1976. [21] S. Tsuchiya, A. Omote, M. Murakami and S. Yoshimura, “Positively Charged Monolayer Photoreceptor with H2-phthalocyanine,” Journal of Image Science and Technology, Vol.39, No.4, pp., 294-298, 1995. [22] M. Sasahara, H. Fukunaga and A. Ikeda, “Resolution Improvement on a-Si Photoreceptor Drums,” IS&T''s NIP14: International Conference on Digital Printing Technologies, pp.535-538, 1998. [23] T. Toyoshima, T. Iwamatsu, N. Azuma, S. Nishio and Y. Mutoh, “Optimization of the Image Profile Transform in High Resolution Electrophotography,” IS&T''s NIP16: International Conference on Digital Printing Technologies, pp.303-306, 2000. [24] R. Kohler, D. Giglberger and F. Bestenreiner, “Studies on Electorphoretic Developers for Pictorial Electrophotography,” Photographic Science and Engineering, Vol.22, No.4, pp.218-227, 1978. [25] S. Ahuja, “Flow of Particulates, Toners and Carriers in a Housing Cavity,” IS&T''s NIP23: International Conference on Digital Printing Technologies, pp.53-55, 2007. [26] K. B. Paxton, “Electrophotographic Systems Solid Area Response Model,” Photographic Science and Engineering, Vol.22, No.3, pp.159-164, 1978. [27] S. Rai and R. Rockwell, “Setpoint Determination of Printing Systems Using Multiobjective Optimization,” IS&T''s NIP16: International Conference on Digital Printing Technologies, pp.164-166, 2000. [28] H. Fujita, D.-Y. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda and A. Ohtsuka, “A Simple Method for Determining the Modulation Transfer Function in Digital Radiography,” IEEE Transactions on Medical Image, Vol.44, No.1, pp.34-39, 1992. [29] R. L. Lamberts, Use of Sinusoidal Test Patterns for MTF Evaluation. [30] R. O. Gappinger, J. E. Greivenkamp and C. Borman, “High-modulation Camera for Use with a Non-null Interferometer,” Optical Engineering, Vol.43, No.3, pp.689-696, 2004. [31] M. Zaja and A. Persin, “Modulation Transfer Function (MTF) Measurement of Thermal Imaging System from the Edge Response Function,” Optical Engineering, Vol. 22, No. 6, pp.743-745, 1983. [32] P. Madhav, C. N. Brzymialkiewicz, S. J. Cutler, J. E. Bowsher and M. P. Tornai, “Characterizing the MTF in 3D for a Quantized SPECT Camera Having Arbitrary Trajectories,” IEEE Nuclear Science Symposium Conference Record-Nuclear Science Symposium and Medical Imaging Conference, Vol.3, pp.1722-1726, 2005. [33] J. Primot, M. Girard and M. Chambon, “Modulation Transfer Function Assessment for Sampled Imaging Systems: A Generalization of the Line Spread Function,” Journal of Modern Optics, Vol. 41, No. 7, pp.1301-1306, 1994. [34] W. Jang and Jan P. Allebach, “Characterization of printer MTF,” Journal of Imaging Science and Technology, vol. 50, no. 3, pp. 264-175, 2006. [35] How Scanners Work, http://computer.howstuffworks.com/ [36] Roy S. Berns, Principles of Color Technology, John Wiley & Sons, New York, 2000. [37] KODAK Color Separation Guides. [38] E. M. Williams, The Physics and Technology of Xerographic Processes, John Wiley & Sons, New York, 1984. [39] D. McMutry, M. Tinghitella and R. Svendsen, “Technology of the IBM 3800 Printing Subsystem Model 3”, IBM Journal of Research and Development, Vol. 28, No. 3, pp.257-262, 1984. [40] L. B. Schein, K. J. Fowler, G. Marshall and V. Ting, “Microscopic Theory of Magnetic Brush Development with Sponge Carrier,” Journal of Imaging Technology, Vol. 13, No. 2, pp.60-67, 1987. [41] C. Yamaguchi and M. Takeuchi, “Influence of Toner Particle Shape and Size on Electrophotographic Image Quality”, Journal of Imaging Science and Technology, Vol.40, No.5, pp.436-440, 1996. [42] D. Kacker, T. Camis and Jan P. Allebach, “Electrophotographic Process Embedded in Direct Binary Search,” IEEE Transactions on Image Processing, Vol.11, No.3, pp.243-257, 2002. [43] User's Guide for Optimization Toolbox. The MathWorks. [44] K. Deb, Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, New York, 2002. [45] A. Ravindran, K. M. Ragsdell and G. V. Reklaitis, Engineering Optimization Method and Applications, John Wiley & Sons, New Jersey, 2006. [46] K. Deb and R. B. Agrawal, Simulated Binary Crossover for Continuous Search Space, Technical Reports, Department of Mechanical Engineering Indian Institute of Technology, 1994. [47] S. H. Ong and P. M. Nickolls, “Analysis of MTF Degradation in the Imaging of Cells in a Flow System,” International Journal of Imaging Science and Technology, Vol.5, No.3, pp.243-250, 1994. [48] S. Inoue, S. Yamazaki, N. Tsumura and Y. Miyake, “An Evaluation of Image Quality for Hardcopy Based on the MTF of Paper,” Journal of Imaging Science and Technology, Vol.44, No.3, pp.188-195, 2000. [49] C. Koopipat, N. Tsumura, M. Fujino and Y. Miyake, “Image Evaluation and Analysis of Ink Jet Printing System (I): MTF Measurement and Analysis of Ink Jet Images,” Journal of Imaging Science and Technology, Vol.45, No.6, pp.591-597, 2001. [50] R. Jenkin, R. E. Jacobson, M. A. Richardson and I. C. Luckraft, “Analytical MTF Bounds and Estimate for SFR in Discrete Imaging Arrays due to Non-stationary Effects,” Journal of Imaging Science and Technology, Vol.47, No.3, pp.200-208, 2003. [51] J. Nakamoto, H. Yamashita and H. Kaneko, “Quantitative Evaluation of Print Density Uniformity using MTF Fractal Dimension,” Systems and Computers in Japan, Vol.34, No.2, pp. 92-99, 2003. [52] A. S. Chawla, H. Roehrig, J. J. Rodriguez and J. Fan, “Determining the MTF of Medical Imaging Displays using Edge Techniques,” Journal of Digital Imaging, Vol.18, No.4, pp. 296-310, 2005. [53] I. W. Selesnick, “Maximally Flat Low-pass Digital Differentiators,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol.49, No.3, pp.219-223, 2002. [54] D. L. Lau and G. R. Arce, Modern Digital Halftoning, Marcel Dekker, New York, 2001. [55] R. C. Gonzales and R. E. Woods, Digital Image Processing, Prentice Hall, New Jersey, 2002.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8291-
dc.description.abstract隨選列印已經成為一個競爭激烈的全球市場。而光電成像技術則是解決快速列印需求之不二選擇,其相關研究仍是一個蓬勃發展之領域。雷射印表機則為使用光電成像技術最典型之產品。 本論文首先嘗試整合雷射列印系統中最重要之三個子過程,即充電、曝光以及顯像,並加入掃描線距模式,獲得一可預測從二元輸入影像至碳粉影像之整合模式。透過模擬列印測試影像,並與實際列印影像比較,所獲得之整合模式的確可以有效預測列印影像。藉由這個模式,將能進一步作系統參數最佳化設計和系統調變移轉函數 (MTF) 之預測分析。有鑒於產品生命週期日益縮短,且跌價速度變快,與此同時產品之品質也要兼顧。藉由之前所建立之模式,並利用模糊機制來連結模式之參數與目標函數,以此建立符合消費者及製造商期望 (成本、性能和耗電量) 之目標函數,並進一步利用演化演算法 (Evolutionary Algorithm) 和傳統最佳化演算法 (Standard Optimization Algorithm) 來求解目標函數,其解為符合期望之系統最佳化參數。再者,一個理想的列印系統除了要能夠準確地重現列印影像之顏色之外,也要能夠重現影像之空間品質 (例如清晰度或解析度)。一般列印系統之空間反應函數 (SRF) 與標示系統 (由 SRF 分解而得之非線性濾波器) 可看成由區域性傳遞函數 (local transfer functions or LTF’s) 與調變轉換函數 (modulation transfer functions or MTF’s) 串聯而成之空間不變性 (spatially invariant) 模式。本論文利用含正弦或方波圖樣之測試圖樣和邊緣上升 (edge rise) 之測試圖樣來鑑別列印系統之 MTF’s。zh_TW
dc.description.tableofcontentsAcknowledgements......................................... i Chinese Abstract……………………………………………………………… ii English Abstract……………………………………………………iii Contents……………………………………………………………… iv List of Figures……………………………………………………vii List of Tables………………………………………………………xi Chapter 1 Introduction………………………………………… 1 1.1 Motivation………………………………………… 2 1.2 Literature Review………………………………… 3 1.2.1 Modeling for Laser Printing Systems……… 3 1.2.2 Design Optimization for Laser Printing Systems ……………………………………………………………4 1.2.3 Analysis for Laser Printing systems……… 5 1.3 Organization and Contribution……………… 6 Chapter 2 System Description………………………………… 8 2.1 Electrophtographic process……………………… 8 2.2 Calibrated Scanner………………………………… 9 2.2.1 Spectrophotometer…………………………………… 10 2.2.2 Color Checker (KODAK Color Separation Guides and Gray Scale - 14 Inch)…………………………… 10 Chapter 3 Modeling and Simulation of Laser Printing System ……………………………………………………………12 3.1 An Integrated Model………………………………… 12 3.1.1 Charging……………………………………………… 13 3.1.2 Exposure……………………………………………… 14 3.1.3 Development…………………………………………… 17 3.1.3.1 Mass of the Toner on One Carrier Bead………… 17 3.1.3.2 Number of Carrier Beads per Unit Image Area… 18 3.1.3.3 Fraction of Toner Particles Removed from One Carrier Bead……………………………………………………… 19 3.1.3.4 Toner Mass per Unit Image Area………………… 19 3.2 Simulation Result…………………………………… 21 3.3 Conclusion…………………………………………… 31 Chapter 4 Optimal Parameters Design for Laser Printing System……………………………………………………………… 32 4.1 Formulate Optimization Problem………………… 32 4.1.1 Decision Variables………………………………… 33 4.1.2 Objective Functions Descript…………………… 34 4.1.3 Constraints…………………………………………… 38 4.2 Applied Algorithms………………………………… 40 4.2.1 Nonlinear Constraint Optimization Algorithm 41 4.2.2 Elitist Multi-objective Evolutionary Algorithm ……………………………………………………………43 4.3 Simulation Results ……………………………………45 4.4 Conclusion…………………………………………… 52 Chapter 5 Modulation Transfer Function (MTF) of Laser Printing System………………………………………………… 53 5.1 Description of Determining MTF Methods……… 53 5.2 Experiment Results………………………………… 54 5.2.1 1-D MTF Determination……………………………… 58 5.2.1.1 Method of Using Edge Rise Test Image………… 58 5.2.1.2 Method of Using Square Wave Test Image……… 65 5.2.2 2-D MTF Determination……………………………… 69 5.2.2.1 Method of Using Edge Rise Test Image……… 69 5.2.2.2 Method of Using Sinusoid Test Image……… 74 5.3 Conclusion…………………………………………… 78 Chapter 6 Conclusions and Future Work ………………………79 6.1 Conclusions…………………………………………… 79 6.2 Future Work…………………………………………… 80 Reference..............................................82 Appendix A: Color Space Transformation.........................................91 Appendix B: Parameters for Laser Printing System.................................................94 Appendix C: Created Halftone Pattern................................................97 Appendix D: 1-D Edge Rise Test Image..................................................99 Appendix E: 1-D Square Test Image.................................................100 Appendix F: 2-D Edge Rise Test Image.................................................102 Appendix G: 2-D Sinusoidal Test Image.................................................103zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200822331700en_US
dc.subjectDigital laser printing systemen_US
dc.subject數位雷射列印系統zh_TW
dc.subjectModelingen_US
dc.subjectAnalysisen_US
dc.subjectDesing optimizationen_US
dc.subject模式建立zh_TW
dc.subject分析zh_TW
dc.subject設計最佳化zh_TW
dc.title數位雷射列印系統之模式建立,分析與設計最佳化zh_TW
dc.titleModeling, Analysis and Design Optimization for Digital Laser Printing Systemsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.