Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8299
標題: 應用於可攜式系統之高效能直流轉直流 電源轉換器
High Performance DC to DC Power Converters for Portable System
作者: 陳厚銘
Chen, Hou-Ming
關鍵字: DC to DC Converter;直流轉直流轉換器;Boost Converter;Buck Converter;升壓轉換器;降壓轉換器
出版社: 電機工程學系所
引用: [1] M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, 3rd ed. Tunghua, 1995. [2] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 2nd ed. John Wiley, 1995. [3] A. I. Pressman, Switching Power Supply Design, 2nd ed. McGraw-Hill, 1999. [4] S. Hsu, A. Brown, L. Rensink, and R. Middlebrook, “Modeling and analysis of switching dc-to-dc converters in constant frequency current programmed mode,” in Proc. IEEE Power Electronics Specialists Conference, 1979, pp. 284-301. [5] B. Arbetter, R. Erickson and D. Maksimovic, “DC-DC converter design for battery-operated system,” in Proc. IEEE Power Electronics Specialists Conference, 1995, pp. 103-109. [6] P. Midya, P. T. Krein, and M. F. Greuel, “Sensorless current mode control-an observer-based technique for dc-dc converters,” IEEE Transactions on Power Electronics, vol.16, no. 4, pp.522-526, July 2001. [7] A. Barrado, R. Vazquez, A. Lazaro, J. Pleite and E. Olias, “Fast transient response dc/dc converter for low output voltage,” Electronics Letters, vol.38, no. 19, pp.1127-1128, Sept. 2002. [8] D. Ma, W.-H. Ki, C.-Y. Tsui, and P.K.T. Mok., “Single-inductor multiple-output switching converter with time-multiplexing control in discontinuous conduction mode,” IEEE Journal of Solid-State Circuit, vol.38, no.1, pp.542-547, Jan. 2003. [9] C. F. Lee and P. K. T. Mok, “A monolithic current-mode dc-dc converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol.39, pp.3-14, Jan. 2004. [10] P. Li and B. Lehman, “A design method for paralleling current mode controlled dc-dc converters,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 748-756, May 2004. [11] C. F. Lee and P. K. T. Mok, “On-chip current sensing technique for cmos monolithic switch-mode power converter,” in Proc. IEEE International Symposium on Circuits and Systems, 2002, pp. 26-29. [12] H. P. Forghani-zadeh and G. A. Rincon-Mora, “Current-sensing techniques for dc-dc converters,” in Proc. Midwest Symposium on Circuits and Systems, 2002, pp. 577-580. [13] V. Kursun, S. G. Narendra, V. K. De and E. G. Friedman, “Low-voltage-swing monolithic dc-dc conversion,” IEEE Transactions on Circuits and Systems-II, vol. 51, no. 5, pp. 241-248, May 2004. [14] D. Q'Sullivan, H. Spruyt and A. Crausaz, “PWM conductance control,” in Proc. IEEE Power Electronics Specialists Conference, 1998, pp. 351-359. [15] M. K. Kazimierczuk and R. S. Geise, “A new non-symmetric phase integral-lead controller for pwm dc-dc converters,” in Proc. IEEE Conference on Control Applications, 1995, pp. 366-371. [16] A. Barrado, R. Vazquez, E. Olias, A. Lazaro and J. Pleite, “Fast transient response in hybrid sources with combined linear-non-linear control,” in Proc. IEEE Power Electronics Specialists Conference, 2002, pp. 1599-1604. [17] B. Bryant, and M.K. Kazimierczuk, “Modeling the closed-current loop of pwm boost dc-dc converters operating in ccm with peak current-mode control,” IEEE Transactions on Power Electronics, vol.52, no. 11, pp.2404-2412, Nov. 2005. [18] C.-M. Wang, “Novel zero-voltage-transition pwm dc-dc converters,” IEEE Transactions on Industrial Electronic, vol.53, no.1, pp.254-262, Feb. 2006. [19] P. L. Miribel-Catala, M. Puig-Vidal, J. S. Marti, P. Goyhenetche, and X. Nguyen, “An integrated digital PFM dc-dc boost converter for a power management application—a RGB backlight LED system driver,” in Proc. IEEE Industrial Electronics Society Conference, Nov. 2002, pp.37-42. [20] H. M. Chen, D. D. Jiang and R. C. Chang, “A monolithic boost converter with an adaptable current-limited pfm scheme,” in Proc. IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2006, pp. 662-665. [21] B. Sahu and G. A. Rincon-Mora, “An accurate, low-voltage, cmos switching power supply with adaptive on-time pulse-frequency modulation (pfm) control,” IEEE Transactions on Circuits and Systems-I, vol. 54, no. 2, pp. 312-321, Feb. 2007. [22] A. Morra, M. Piselli, M. Flaibani and A. Gola, “A buck converter operation in pfm mode, mathematical model and simulation analysis,” in Proc. International Telecommunications Energy Conference, Oct. 2007, pp. 23-26. [23] H. M. Chen, R. C. Chang and P. S. Lei, “An Exact, high-efficiency pfm dc-dc boost converter with dynamic stored energy,” in Proc. IEEE International Conference on Electronics, Circuits, and Systems, Aug.-Sept. 2008, pp. 622-625. [24] J. Wang, W. Gong and L. He, “Design and implementation of high-efficiency and low-power dc-dc converter with pwm/pfm modes,” in Proc. International Conference on ASIC, Oct. 2007, pp. 596-599. [25] X. Zhang and D. Maksimovic, “Digital pwm/pfm controller with input voltage feed-forward for synchronous buck converters,” in Proc. IEEE Applied Power Electronics Conference and Exposition, Feb. 2008, pp. 523-528. [26] G. A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, low drop-out regulator,” IEEE Journal of Solid-State Circuits, vol.33, no. 1, pp.36-44, Jan. 1998. [27] A. Barrado, R. Vazquez, A. Lazaro, E. Olias, and J. Pleite, “Linear-non-linear control applied to buck converter to get fast transient response,” in Proc. IEEE International Symposium on Industrial Electronics, 2002, pp. 999-1003. [28] A. Barrado, A. Lazaro, J. Pleite, R. Vazquez, J. Vazquez, and E. Olias, “Linear-non-linear control (LnLc) for dc-dc buck converters: stability and transient response analysis,” IEEE Applied Power Electronics Conference and Exposition, 2004, pp.1329-1335. [29] D. Ma, W.-H. Ki, and C.-Y. Tsui, “An integrated one-cycle control buck converter with adaptive output and dual loops for output error correction,” IEEE Journal of Solid-State Circuits, vol. 39, no.1, pp.140-149, Jan. 2004. [30] M. D. Mulligan, B. Broach and T. H. Lee, “A constant-frequency method for improving light-load efficiency in synchronous buck converters,” IEEE Power Electronics Letters, vol.3, no.1, pp.24-29, March 2005. [31] P. Y. Wu and P. K. T. Mok, “A monolithic buck converter with near-optimum reference tracking response using adaptive-output-feedback,” IEEE Journal of Solid-State Circuits, vol. 42, no.11, pp.2441-2450, Nov. 2007. [32] E. Bonizzo, F. Borghetti, P. Malcovati, F. Maloberti and B. Niessen, “A 200mA 93% peak efficiency single-inductor dual-output dc-dc buck converter,” in Proc. IEEE International Solid-State Circuits Conference, 2007, pp.526-527. [33] M. D. Mulligan, B. Broach and T. H. Lee, “A 3mhz low-voltage buck converter with improved light load efficiency,” in Proc. IEEE International Solid-State Circuits Conference, 2007, pp.528-529. [34] K. Y. Khoo and A. N. Willson, “Low power cmos clock buffer,” in Proc. IEEE International Symposium on Circuits and Systems, 1994, pp. 355-358. [35] H.-Y. Huang and Y.-H. Chu, “Feedback-controlled split-path cmos buffer,” in Proc. IEEE International Symposium on Circuits and Systems, 1996, pp. 300-303. [36] E. D. Kyriakis-Bitzaros and S. S. Nikolaidis, “Design of low power cmos drivers based on charge recycling,” in Proc. IEEE International Symposium on Circuits and Systems, 1997, pp. 1924-1927. [37] K.-H. Cheng, W.-B. Yang, and H.-Y. Huang, “The charge-transfer feed-back-controlled split-path cmos buffer,” IEEE Transactions on Circuits and Systems-II, vol. 46, no. 3, pp. 346-348, Mar. 1999. [38] C. Yoo, “A cmos buffer without short-circuit power consumption,” IEEE Transactions on Circuits and Systems-II, vol. 47, no. 9, pp. 935-937, Sept. 2000. [39] N. H. E. Weste and L. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, 2000. [40] B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buck-boost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443-452, Mar. 2004. [41] C. Zhang, D. Ma and A. Srivastava, “Integrated adaptive dc/dc conversion with adaptive pulse-train technique for low-ripple fast-response regulation,” in Proc. International Symposium on Low Power Electrics and Design, 2004, pp. 257-262. [42] X. Duan, H. Deng, N. X. Sun, A. Q. Huang, and D. Y. Chen, “Monolithically integrated boost converter based on 0.5-μm cmos process,” in Proc. IEEE Applied Power Electronics Conference and Exposition, vol. 51, 2005, pp.241-248. [43] C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-v integrated current-mode boost converter in standard 3.3/5-v cmos technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005. [44] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang and D. Y. Chen, “Monolithically integrated boost converter based on 0.5-μm cmos process,” IEEE Transactions on Power Electronics, vol.20, no. 3, pp.628-638, May 2005. [45] M. D. Mulligan, B. Broach and T. H. Lee, “A constant-frequency method for improving light-load efficiency in synchronous buck converters,” IEEE Power Electronics Letters, vol.3, no. 1, pp.24-29, Mar. 2005. [46] S. Zhou and G. A. Rincon-Mora, “A high efficiency, soft switching dc-dc converter with adaptive current-ripple control for portable applications,” IEEE Transactions on Circuits and Systems-II, vol. 53, no. 4, pp. 319-323, April 2006. [47] A. F. Rafetseder and F. A. Himmelstoss, “Discontinuous operation of the boost converter with reduced buffer voltage stress,” in Proc. International Symposium on Signals, Circuits and Systems, vol.2, July 2007, pp. 1-4. [48] L. Zhu and F. Quanyuan, “Design of pwm controller for monolithic boost converter,” in Proc. International Conference on ASIC, 2007, pp. 660-663. [49] “VFM step-up dc/dc converter,” Richtek Technology Corp. Data Sheet: RT9261/A, March 2007. [50] “High efficiency, low supply current, step-up dc/dc converter,” Richtek Technology Corp. Data Sheet: RT9262/A, March 2007. [51] X. Duan, H. Deng, N. X. Sun, A. Q. Huang, and D. Y. Chen, “A high performance integrated boost dc-dc converter for portable power supply,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2004, pp.1039-1044. [52] R. Attanasio, M. Cacciato, F. Gennaro and A. Consoli, “An Innovative boost converter for fuel cells stationary generation systems,” in Proc. IEEE Industrial Electronics Society Conference, Nov. 2004, pp.2831-2836. [53] P. Mattavelli, “Digital control of dc-dc boost converters with inductor current estimation,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2004, pp.74-80. [54] A. Sangswang and C. O. Nwankpa, “Noise characteristics of dc-dc boost converter experimental validation performance evaluation,” IEEE Transactions on Industrial Electronics, vol.51, no. 6, pp.1297-1304, Dec. 2004. [55] J. W. Kimball, T. L. Flowers and P. L. Chapman, “Low-input-voltage, low-power boost converter design issues,” IEEE Power Electronics Letters, vol. 2, no. 3, pp. 96-99, 2004. [56] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Electric Power Applications, vol. 151, pp. 182-190, 2004. [57] H. M. Chen, R. C. Chang and C. L. Huang, “Low-voltage zero quiescent current pfm boost converter for portable devices,” in Proc. IEEE International SOC Conference, Sept. 2007, pp. 177-180. [58] H. M. Chen, R. C. Chang and J. L. Wu, “A low-voltage integrated current-mode boost converter for portable power supply,” in Proc. IEEE International Conference on Electronics, Circuits, and Systems, Dec. 2007, pp. 1316-1319. [59] B.-S. Song and P. R. Gray, “A precision curvature-compensated cmos bandgap reference,” IEEE Journal of Solid-State Circuits, vol. 18, no. 6, pp. 634-643, Dec. 1983. [60] G. A. Rincon-Mora and P. E. Allen, “A 1.1-v current-mode and piecewise-linear curvature-corrected bandgap reference,” IEEE Journal of Solid-State Circuits, vol. 33, no. 10, pp. 1551-1554, Oct. 1998. [61] K. N. Leung and P. K. T. Mok, “A sub-1-v 15-ppm/oC cmos bandgap voltage reference without requiring low threshold voltage device,” IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 526-530, Apr. 2002. [62] L. Yang, Y. Shi, L. Li and Z. Zheng, “CMOS bandgap voltage reference with 1.8-v power supply,” in Proc. International Conference on ASIC, Qct. 2003, pp. 611-614. [63] K. N. Leung, P. K. T. Mok and C. Y. Leung, “A 2-V 23-μA 5.3-ppm/oC curvature-compensated CMOS bandgap voltage reference,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 561-564, Mar. 2003. [64] J. Sheng, Z. Chen and B. Shi, “A 1V supply area effective cmos bandgap reference,” in Proc. International Conference on ASIC, Qct. 2003, pp. 619-622. [65] M. D. Ker, J. S. Chen and C. Y. Chu, “A cmos bandgap reference circuit for sub-1-v operation without using extra low-threshold-voltage device,” in Proc. IEEE International Symposium on Circuits and Systems, May 2004, pp.41-44. [66] H. M. Chen, C. L. Huang and R. C. Chang, “A new temperature-compensated cmos bandgap reference circuit for portable applications,” in Proc. IEEE International Symposium on Circuits and Systems, May 2006, pp. 577-580.
摘要: 
中文摘要

本論文提出可程式化能量調變(PEM)技術和動態儲存能量(DSE)技術,可應用於可攜式電子產品的直流轉直流轉換器。綠能概念已是今日產業發展的趨勢,隨著消費性電子產品需求的增加,節能和縮小面積將是最為重要的課題,現今普遍被採用的高效能調變技術(PWM、PFM和PWM/PFM),在直流轉直流轉換器上各有其優缺點和限制。創新的可程式化能量調變技術(PEM)的直流轉直流降壓轉換器,把能量做有效率的程式化管理,在不同負載電流操作時,將提供最適當的能量到負載端,使每份能量達到最有效率的使用。負載電流2mA到450mA操作下,所設計降壓轉換器能準確的把3.3V輸入電壓轉換至0.5V輸出電壓,最大功率轉換效率可達96.77%,負載穩壓度和線穩壓度分別為0.31%V/A 和0.0019%V/V,輸出漣波電壓小於15mV,晶片面積為1.5mm2,以上效能皆優於現今文獻直流轉直流轉換器的效能。
所設計的動態儲存能量技術,被實現於脈波頻率調變的直流轉直流升壓轉換器,動態儲存能量技術利用負載電流檢測器,檢測負載電流的變化,其檢測訊號經由動態感應電流控制器後,產生不同的儲存能量至負載端,這將有效降低能量傳送時的功率消耗和減小輸出漣波電壓。負載電流1mA到150mA操作下,動態儲存能量技術的輸出上漣波電壓變化為1.9mV (6.1mV-8mV),相較傳統固定能量技術40mV (8mV-48mV),有比較準確的輸出電壓,最大的功率轉換效率為91.91%,在1mA負載電流下,所提出的動態儲存能量技術有高於傳統固定能量技術16%的功率轉換效率。
論文中所提出的降壓式與升壓式直流轉直流轉換器,是使用台灣積體電路製造股份有限公司的0.35μm 2P4M CMOS製程來設計與製作。

Abstract
This dissertation proposes a buck converter with programmable energy modulation (PEM) and a PFM boost converter with dynamic stored energy (DSE) for portable devices. In recent years, industrial products have become increasingly “green” IT. Power saving and low chip area have become important goals of the manufacture of consumer products. Several exiting techniques such as PWM, PFM and PWM/PFM are widely exploited in DC to DC converters, but they have some drawbacks and limitations. The innovative DC to DC buck converter based on PEM accurately provides the required amount of energy to load system under different loads. The proposed buck converter regulates a 3.3V supply voltage to 0.5V under 2-450mA loads. The maximum power-conversion efficiency is 96.77%. The load regulation and line regulation are 0.31%V/A and 0.0019%V/V, respectively. The output ripple voltage is smaller than 15mV and the chip area is 1.5mm2.
The proposed pulse-frequency modulation boost converter with dynamic stored energy technique has 91.91% maximum power-conversion efficiency. The high efficiency and exact output are achieved by using dynamic stored energy technique, which enhances the utility rate of energy with low power consumption and effectively reduces output ripple voltage. This technique uses a dynamic sensing current controller and a load current detector that accurately generates different energy according to various load conditions. The output up-ripple voltage variation was 1.9mV (6.1mV-8mV) whereas its fixed energy counterpart was 40mV (8mV-48mV) under 1-150mA loads. The proposed boost converter has a 16% higher power-conversion efficiency than the conventional fixed energy technique at 1mA load current.
Both the proposed buck and boost converters were designed and fabricated with a standard TSMC 0.35μm 2P4M CMOS technology.
URI: http://hdl.handle.net/11455/8299
其他識別: U0005-2201200907595900
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.