Please use this identifier to cite or link to this item:
標題: 訊息傳導網路分析與控制設計
Analsis and Control Design for Signal Transduction Networks
作者: 劉元威
Liu, Yuan-Wei
關鍵字: signal transduction networks;訊息傳導網路;biochemical networks;systems biology;feedback linearization;Lyapunov stability;生化網路;系統生物;回授線性化;李亞普諾夫穩定性
出版社: 電機工程學系所
引用: [1] B. S. Chen, Y. C. Wang, W. S. Wu and W. H. Li, A new measure of the robustness of biochemical networks, Bioinformatics, Vol. 21, pp. 2698-2705, 2005. [2] O. Wolkenhauer, B. K. Ghosh and K. H. Cho, Control and coordination in biochemical networks, Control Systems Magazine, IEEE, Vol. 24, pp. 30-34, 2004. [3] J. Saez-Rodriguez, A. Kremling, H. Conzelmann, K. Bettenbrock and E. D. Gilles, Modular analysis of signal transduction networks, Control Systems Magazine, IEEE, Vol. 24, pp. 35-52, 2004. [4] N. V. Torres and E. O. Voit, Pathway analysis and optimization in metabolic engineering, Cambridge University Press, 2002. [5] J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1993. [6] M. S. Calder and D. Siegel, Properties of the Michaelis-Menten mechanism in phase space, Journal of Mathematical Analysis and Applications, Vol. 339, pp. 1044-1064, 2008. [7] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgower and E. D. Gilles, Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling, Systems Biology, Vol. 1, pp. 159-169, 2004. [8] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. N. Kholodenko and E. D. Gilles, A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks, BMC Bioinformatics, Vol. 7, No. 34, 2006. [9] M. A. Savageau, Biochemical systems analysis: a study of function and design in molecular biology, The Quarterly Review of Biology, Vol. 52, pp. 292-293, 1977. [10] F. S. Wang, C. L. Ko and E. O. Voit, Kinetic modeling using S-systems and lin-log approaches, Biochemical Engineering Journal, Vol. 33, pp. 238-247, 2007. [11] E. O. Voit, Computational analysis of biochemical systems, Cambridge University Press, Cambridge, UK, 2000. [12] E. O. Voit, Canonical nonlinear modeling: S-systems approach to understanding complexity, Van Nostrand Reinhold, New York, 1991. [13] K. Zhou, Essentials of robust control, Prentice Hall, New Jersey, 1998. [14] C. T. Chen, Linear system theory and design, Oxford University Press, New York, 1998. [15] K. A. Hoo and J. C. Kantor, Global linearization and control of a mixed culture bioreactor with competition and external inhibition, Mathematical Biosciences, Vol. 82, pp. 43-62, 1986. [16] K. A. Hoo and J. C. Kantor, Linear feedback equivalence and control of an unstable biological reactor, Chemical Engineering Communications, Vol. 46, pp. 385-399, 1986. [17] B. Noble and J. W. Daniel, Applied linear algebra, Pearson Education Taiwan, Taiwan, 2003. [18] R. W. Brockett, Nonlinear systems and differential geometry, Proceedings of the IEEE, Vol. 64, pp. 61-72, 1976. [19] A. Ervadi-Radhakrishnan and E. O. Voit, Controllability of non-linear biochemical systems, Mathematical Biosciences, Vol. 196, pp. 99-123, 2005. [20] C. L. Lin, Mathematics of modern control theory, Kaun Tang international publications, Taipei, 2007. [21] M. A. Savageau, Design principles for elementary gene circuits: elements, methods and examples, Chaos, Vol. 11 pp. 142-159, 2001. [22] M. A. Savageau, Alternative designs for a genetic switch: analysis of switching times using the piece-wise power-law representation, Mathematical Biosciences, Vol. 180, pp. 237-253, 2002. [23] M. A. Savageau, Biochemical systems analysis, Journal of Theoretical Biology, Vol. 25, pp. 365-369, 1969. [24] E. O. Voit, M. A. Savageau, Accuracy of alternative representations for integrated biochemical systems, Biochemistry, Vol. 26, pp. 6869-6880, 1987. [25] A. Sorribas and M. A. Savageau, A comparison of variant theories of intact biochemical systems. 1. enzyme-enzyme interactions and biochemical systems Theory. Mathematical biosciences, Vol. 94, pp. 161-193, 1989. [26] M. A. Savageau, Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems, Nature, Vol. 229, pp.542-544, 1971 [27] R. W. Brockett, Feedback invariants for nonlinear systems, Proceedings of the IFAC World Congress, Helsinki, pp. 1115-1120, 1978. [28] A. Isidori, Nonlinear control systems: an introduction, Springer, New York, 1995. [29] Q. Lu, Y. Sun and S. Mei, Nonlinear control systems and power system Dynamics, Kluwer Academic Publishers, 2001. [30] H. K. Khalil, Nonlinear systems, Pearson Education, New Jersey, 2002. [31] A. Sorribas and M. Cascante, Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism, Biochemical Journal, Vol. 298, pp. 303-311, 1994.

Signal transduction networks of biological systems are highly complex. How to mathematically describe a signal transduction network by systematic approaches so as to further develop an appropriate and effective control strategy is attractive to control engineers. In this thesis, a mathematical model and a controller design idea of signal transduction networks are presented. For constructing mathematical model, a new cascaded analysis model is proposed. Dynamic analysis, steady-state analysis, stability analysis, sensitivity analysis and controller design are simulated and fully verified. It is expected that this research could be a basis for constructing mathematical models and designing controllers for signal transduction networks in biological systems.
其他識別: U0005-2407200813152200
Appears in Collections:電機工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.