Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8346
標題: 複合鍍奈米碳管場發射背光源開發
Development of Carbon Nanotube Field Emission Back Light Units by Composite Plating Method
作者: 林資敬
Lin, Tzu-Ching
關鍵字: carbon nanotubes film cathode (CNTFC);奈米碳管;composite plating;temperature;field emission;場發射;背光源;無電鍍鎳;複合鍍
出版社: 電機工程學系所
引用: [1]S. Iijima, Nature 354 (1991) 56. [2]H. W. Kroto, J. R. Heath S. C. O., R. F. Curl and R. E. Smalley, Nature 318 (1985) 162. [3]W.B. Choi, et al., Appl. Phys. Lett. 78 (1999) 1547. [4]W.B. Choi, D.S. Chung, S.H. Park, J.M. Kim, SID’99 Digest 1135 (1999) . [5]A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269 (1995) 1550. [6]J.M. Bonard, J.P. Salvetat, T. Stochli, W.A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73 (1998) 918. [7]W.A. de Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179. [8]Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72 (1998) 2912. [9]S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283 (1999) 512. [10]L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Appl. Phys. Lett. 76 (2000) 2071. [11]Mukul Kumar, Tsugio Okazaki, Mineo Hiramatsu, Yoshinori Ando, Carbon 45 (2007) 1899. [12]L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, K. Kern, Appl. Phys. Lett. 76 (2000) 2071. [13]J.L. Kwo, Meiso Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond & Related Materials 9 (2000) 1270. [14]Uuan Cheng, Otto Zhou, C. R. Physique 4 (2003) 1021. [15]J.L. Kwo, Meiso Yokoyama, W.C. Wang, F.Y. Chuang, I.N. Lin, Diamond & Related Materials 9 (2000) 1270. [16]Cheol Jin Lee, Jeunghee Park, Jeong A. Yu, Chemical Physics Letters 360 (2002) 250. [17]S.H. Lee, C.H. Lin, J.-M Chiou, C.T. Kuo, Diamond & related Materials 15 (2006) 854. [18]Shang-Chou Chang, Tien-Chai Lin, Chen-Yu Pai, Microeletronics Journal 38 (2007) 657. [19]Te-Hua Fang, Kuan-Hua Chen, Win-Jin Chang, Applied Surface Science 254 (2008) 1890. [20]W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, L. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, amd J. M. Kim, Appl. Phys. Lett. 78 (2001) 11. [21]Sung Mi Jung, Joeoong Hahn, Hyun Young Jung, and Jung Sang Suh, Nano Letters 6 (2006) 1569. [22]Aldo R. Boccaccini, Johann Cho, Judith A. Roether, Boris J.C. Thomas, E. Jane Minay, Milo S.P. Shaffer, Carbon 44 (2006) 3149. [23]Sung Mi Jung, Hyun Young Jung, Jung Sang Suh, Carbon 45 (2007) 2917. [24]Yuxiang Qin, Ming Hu, Applied Surface Science 254 (2008) 3313. [25]Vink TJ, Gillies M, Kriege JC, van de Laar HWJJ, Appl. Phys. Lett. 82 (2003) 3552. [26]Kim YC, Sohn KH, Cho YM, Yoo EH, Appl. Phys. Lett. 84 (2004) 5350. [27]Hyeon Jae Lee, Yang Doo Lee, Seung I1 Moon, Woo Sung Cho, Yun-Hi Lee, Jai Kyeong Kim, Sung Woo Hwang, Byeong Kwon Ju, Carbon 44 (2006) 2625. [28]Hee Jin Jeong, Ha Kyu Choi, Gil Yong Kim, Young Il Song, Yu Tong, Seong Chu Lim, Young Hee Lee, Carbon 44 (2006) 2689. [29]Yang Doo Lee, Kyong-Soo Lee, Yun-Hi Lee, Byeong-Kwon Ju, Applied Surface Science 254 (2007) 513. [30]J.H. Han, S.H. Choi, T.Y. Lee, J.B. Too, C.Y. Park, T.W. Jeong, H.J. Kim, Y.J. Park, I.T. Han, J.N. Heo, C.S. Lee, SeGi Yu, W.K. Yi, J.M. Kim, Physica B 323 (2002) 182. [31]W.A. de Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179. [32]Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seelig, R.P.H. Chang, Appl. Phys. Lett. 72 (1998) 2912. [33]C. Ke, H.D. Espinosa, Appl. Phys. Lett. 85 (2004) 681. [34]J.W Ward, M. Meinhold, B.M. Segal, J. Berg, R. Sivarajan, D.K. Brock, T. Rueckes, in: Proceeding for Non-Volatile Memory Technology Symosium, 15-17 November 2004 34. [35]Jeong Won Kang, O.K. Kwon, Jun Ha Lee, Hoong Joo Lee, Young-Jing Song, Young-Sik Yoon, Ho Jung Hwang, Physica E 33(2006) 41. [36]Christofer Hierold, Alain Jungen, Christoph Stampfer, Thomas Helbling, Sensors and Actuators A 136 (2007) 51. [37]Yang Doo Lee, Woo-Sung Cho, Seung-IL Moon, Yun-Hi Lee, Jai Kyeong Kim, Sahn Nahm, Byeong-Kwon Ju, Chemical Physics Letters 433 (2006) 105. [38]C.S. Huang, B.R. Huang, Y.H. Jang, M.S. Tsai, C.Y. Yeh., Diamond & Related Materials 14 (2005) 1872. [39]C.S. Huang, B.R. Huang, M.H. Tsai, Y.M. Chuang, C.H. Hsiao, Diamond & Related Materials 15 (2006) 2015. [40]Phaedon Avouris, Jia Chen, Materials Today 9 (2006) 10. [41]吳詩聰,『液晶顯示氣得發展近況』,光訊,73期,1998年8月,pp. 14。 [42]鄭晃忠,『液晶顯示器之非晶矽薄膜電晶體可信賴性研究』,電子資訊,第2卷,第3期,1996年3月,pp. 23。 [43]謝崇凱,『剖析關鍵材料組成及其特性』,技術探勘,第197期,2002年9月,pp. 210。 [44]盧慶儒,DigiTimes.com,次世代LCD背光元件發展趨勢(2),奈米場發射光源實現降低背光模組成本夢想。 [45]工研院電子所 蕭名君「面光源背光模組技術與市場發展」,光電科技雜誌「奈米碳管場發射顯示器 實現傳統陰極射線管平面化」。 [46]Y.S. Shi, C.-C Zhu, W. Qikun, L. Xin, Diamond Relat. Mater. 12 (2003) 1449. [47]Lili Wang, Zhuo Sun, Shanghai University, Solid-State Electronics 50 (2006) 800–804. [48]Lae-Hong Park, Gil-Hwan Son, Jin-San Moon, Jae-Hee Han, Alexander S. Berdinsky, D. G. Kuvshinov, Ji-Beom Yoo, Chong-Yun Park, J. Vac. Sci. Technol. B 23(2), Mar/Apr 2005. [49]Yuxiang Qin, Ming Hu, Haiyan Li, Zhisheng Zhang, Qiang Zou, Applied Surface Science 253 (2007) 4021. [50]Axel Schindlwe, Jochen Brill, Norbert Fruehauf, James P. Novak, Zvi Yaniv, Physica E 37 (2007) 119. [51]P.H Tan , C.Y .Hu , F. Li , S. Bai , P.X. Hou , H.M. Chen, Carbon 40 (2002) 1131.。 [52]R.Saito, G. Dresselhaus, M.S Dresselhaus, Physical Properties of CNTs, Imperial College Press, London,(1999). [53]Yanwu Zhu, Pinghui Li, J. Phys. Chem. B 111 (2007) 1672. [54]林麗娟,田大昌,工業材料雜誌,181 (2002)73. [55]Fu-Hsiang Ko, Chung-Yang Lee, Chu-Jung Ko, Tieh-Chi Chu, Carbon 43 (2005) 727. [56]Konstantin B. Shelimov, Rinat O. Esenaliev, Andrew G. Rinzler, and Chad B. Huffman, Chemical Physics Letters 282 (1998) 429. [57]L. S. K. Pang, J. D. Saxby, S.P. Chatfield, Journal of Physical Chemistry 97 (1993) 6941. [58]S. C. Tsang, P. J. Harris,and M. L. Green, Nature 362 (1993) 520. [59]G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Chemical Communications 3 (1998) 36. [60]Hui Hu, Bin Zhao, Mikhail E. Itkis, Robert C. Haddon, Journal of Physical hemistry B 107 (2003) 13838. [61]Yan-hui Li, Shuguang Wang, Jinquan Wei, Xianfeng Zhang, Cailu Xu, Zhaokun Luan, Dehai Wu, Bingqing Wei, Chemical Physics Letters 357 (2002) 263. [62]Avetik R. Harutyunyan, Bhabendra K. Pradhan, Jiping Chang, Gugang Chen, Peter C. Eklund, Journal of Physical Chemistry B 106 (2002) 8671. [63]K. Hernadi, A. Siska, L. Thie-Nga, L. Forro, Kiricsi, Solid State Ionics 141-142 (2001)203. [64]Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, Cailu Xu, Carbon 41 (2003) 1057. [65]P.H Tan , C.Y .Hu , F. Li , S. Bai , P.X. Hou , H.M. Chen, Carbon 40 (2002) 1131. [66]M. Corrias , Ph. Sterp , Ph. Kalck , G. Dechambre , J.L Lacout , C. Castiglioni , Y. Kihn., Carbon 41 (2003) 2361. [67]Yi-Tao Liu, Xu-Ming Xie, Yan-Fang Gao, Qing-Ping Feng, Lin-Rui Guo, Xiao-Hao Wang, Xiong-Ying Ye, Materials Letters 61 (2007) 334. [68]J.S. Gao , K. Umeda , K. Uchino , H. Nakashima , K. Muraoka. Materials Science and Engineering A 352 (2003) 308. [69]A. Modinos, Field, Thermionic and Secondary Electron Emission Spectroscopy, Plenum Press, New York, 1984. [70]鄭文榮, 垂直式物理蒸汽沉積法成長碳六十薄膜及其特性量測,碩士論文中原大學應用物理研究所 (2001)。 [71]Hyung Soo Uh, Sung Woo Ko, Jong Duk Lee, Diamond & Related Materials 14 (2005) 850. [72]C. Y. Zhi, X. D. Bai, E. G. Wang, Applied Physic Letters 81 (2002) 1690.
摘要: 
背光模組為TFT-LCD重要的週邊產品之一,現今產業主要以冷陰極螢光燈(CCFL)、EEFL以及LED為背光來源,其中這三項各有其優缺點:
CCFL其壽命短(40000~50000 小時)、發光效率不佳、一個反向器只可以驅動一隻CCFL動作,但其優點為低電壓驅動、BLU(Back Light Unit)不易組裝;EEFL其壽命增長為50000小時以上、一個反向器可以驅動十六隻EEFL動作、BLU組裝簡易減少成本,其驅動電壓卻比CCFL來的高許多、Lamp單價也相對提高80~90%;LED為壽命已達到100000小時、色彩飽和度高達92%、但其功率消耗較為高,導致發熱量變大,因此需要風扇的冷卻,其LCD厚度也隨其增厚。

為了改善上述缺點,許多研究改而利用奈米碳管(Carbon Nanotube-CNT)作為自發白幟光的奈米發射源(Emitter)。奈米碳管有極大的高寬比,作為尖端放電源時可在小的驅動電壓(100V)下進行發射電子,並產生大的場發射電流(1.5mA)。由於場發射(Field Emission)擁有高的發射效率、高穩定性、低表面溫度、易大面積的製造,再配合奈米碳管低驅動電壓與耐高電流的特性,將可望使奈米碳管場發射模組有效應用於TFT-LCD的製作與發展上。然而,文獻指出高溫成長出的奈米碳管其品質與場發射效能較佳。而高品質奈米碳管的成長溫度一般高於500 ℃,使得其成長基板的選擇與條件受限,並使製作成本相對提高許多。

我們使用電弧放電製作奈米碳管粉末,利用觸媒高溫成長奈米碳管粉體,因此不需要耐高溫的基板即可大量成長高品質奈米碳管。此外,利用無電鍍鎳(Electroless Nickel)薄膜的高均勻性、簡易反應以及高導電率等優點,在鍍膜時混入高品質奈米碳管,以製作出複合鍍陰極(Composition Plating Cathode),將使製作成本與技術難度大大降低。此一複合鍍奈米碳管場發射陰極所製作出的背光模組,將有助於使TFT-LCD的特性進一步提升。

此論文的實現方面,我們將以玻璃基板作為示範,利用無電鍍鎳混合奈米碳管並對玻璃基板進行電鍍(Plating),使玻璃基板表面在單一電化學反應步驟中直接形成導電層與奈米碳管場發射陰極。此方法可形成大面積、高密度奈米碳管均勻分佈的陰極。當與導電陽極板組合後,即可形成TFT-LCD背光源。對於TFT-LCD的超薄型化與提高效率等有極大的利用價值。

A novel method to synthesize carbon nanotubes film cathode (CNTFC) was developed by using composite plating. The carbon nanotubes (CNTs) were sublimed by using acid solution to etch and dispersed in electrobath of nickel (Ni) and than to plate onto the slide glass. The CNTFC is well mixed and has a strong adhesion between CNT-Ni and the substrate. The dependence of field emission properties and graphite properties of the CNTFC on the temperature ranging from 60 to 80 ºC of composite plating was studied. The excellent microstructure of the CNTFC was observed at 80 ºC by field-emission scanning electron microscopy (FESEM) and the current density was 2 mA/cm2 at the electric field 2.00 V/μm. The developed CNTFC is suitable for applications of field-emission backlight units (FE-BLUs) and field-emission displays (FEDs).
It was also found that the field emission characteristics and graphite properties were influenced by the different pH value of electrobath. As at pH value of electrobath, 5.4, and the applied electric field of 1.5 V/μm, the field emission current density 1.0 mA/cm2, was achieved.
URI: http://hdl.handle.net/11455/8346
其他識別: U0005-2507200813515200
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.