Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8371
標題: 原晶矽多層膜太陽電池
Protocrystalline-Silicon Multilayer Thin Film Solar Cell
作者: 林士傑
Lin, Shih-Chieh
關鍵字: thin film solar cell;薄膜太陽電池;multilayer;protocrystalline;多層膜;原晶矽
出版社: 電機工程學系所
引用: [1] D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 11 (1976). [2] D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977). [3] R.J. Koval, J.M. Pearlauto, R.W. Collins, and C.R. Wronski, IEEE p.750-p.753 (2000). [4] R.W. Collins, G.M. Ferlauto, R.J. Koval, J. M.Pearce, C.R. Wronski, M.M. Al-Jassim, and K.M. Jones, 3rd World Conference on photovoltaic EEnergy Conversion Oral2767-2772(2003). [5] A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski. R.W. Collins, M.M. Al-Jassim, K.M. Jones, Thin Solid Film 455-456 (2004) 665-669. [6] Hiroyuki Fujiwara, Michio Kondo, Akihisa Matsuda, Journal of Non-Crystalline Solids 338-340 (2004) 97-101. [7] Hiroyuki Fujiwara, Michio Kondo, Akihisa Matsuda, Surface Science 497 (2002) 333-340. [8] P. Roca I Cabarrocas, Journal of Non-Crystalline Solids 266-269 (2000) 31-37. [9] A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski. R.W. Collins, M.M. Al-Jassim, K.M. Jones, IEEE p.1076-p.1081 (2002). [10] Hiroyuki Fujiwara, Michio Kondo, Akihisa Matsuda, Jpn. J. Appl. Phys. Vol. 41 (2002) pp.2821-2828. [11] T. Mates, A. Fejfar, I. Drbohlav, B. Rezek, P. Fojtik, K. Luterova, J. Kocka, C.Koch, M.B. Schubert, M. Ito, K. Ro, H. Uyama, Journal of Non-crystalline Solids 299-302 (2002) 767-771. [12] J. Kocka, T. Mates, H. Stuchlikova, J. Stuchlik, A. Fejfar, Thin Solid Films 501 (2006) 107-112. [13] J. Kocka, A. Fejfar, T. Mates, P. Fojtik, K. Dohnalova, K. Luterova, J. Stuchlik, H. Stuchlikova, I. Pelant, B. Rezel , and M. Ito, phys. Stat.col No.5, 1097-1114 (2004). [14] R.W. Collins*, A.S. Ferlauto, G.M. Ferreira, Chi Chen, Joohyun Koh, R.J. Koval, Yeeheng Lee, J.M. Pearce, C.R. Wronski, Solar Energy Materials & Solar Cells 78 (2003) 143–180. [15] C.R. Wronski, R.W. Collins, Solar Energy 77 (2004) 877-885. [16] Seong Won Kwon, Joonghwan Kwak, Seung Yeop Myong, Koeng Su Lim, Journal of Non-Crystalline Solids 352 (2006) 1134-11037. [17] Seung Yeop Myong, Makoto Konagai, and Loeng Su Lim, 3rd World Conference on Photovoltaic Energy Conversion P.1731-1740(2003). [18] Seung Yeop Myong, Seong Won Kwon, Koeng Su Lim, Makoto Konagai, Solar Energy Materials & Solar cells 89 (2005) 133-140. [19] Kyung Hoon Jun, Jeroen Daey ouwens and Ruud E.l Schropp, Jeong Yong Lee, Jae Hyung Choi, and Ho Seong Lee, Kong Su Lim, Journal of Applied Physics vol 88, NO.8. [20] A. Fontcuberta I Morral , P. Roca I Cabarrocas, Thin Solid Films 383 (2001) 161-164. [21] A. Fontcuberta I Morral , H. Hofmeister , P. Roca I Cabarrocas, Journal of Non-Crystalline Solids 299-302 (2002) 284-289. [22] 江雨龍 氫化非晶矽及微晶矽薄膜太陽電池 電子資訊第13卷第一期2007年6月 [23] 楊孟家 protocrystalline-silicon multilayer thin film solar cells 中興大學大電機碩士論文
摘要: 
原晶矽(protocrystalline)薄膜太陽電池具有較穩定的結構特性,可以降低薄膜太陽電池的光照衰退。原晶矽薄膜一般以中度氫稀釋比條件下沉積,並控制其薄膜處於成核結晶前的孵化層厚度內。
本論文以13.56 MHz電漿加強化學氣相沉積系統,變化氫稀釋比(R = H2/SiH4)範圍為R = 25至R = 60沉積原晶矽薄膜。為維持原晶矽結構特性,製作原晶矽/非晶矽(pc-Si:H/a-Si:H)多層膜結構,將各原晶矽薄膜子層在適當厚度沉積後,以非晶矽薄膜子層阻斷,避免原晶矽薄膜繼續成長形成結晶。阻斷層所用的非晶矽薄膜採用兩種方式製作,第一種是利用低氫稀釋比(R = 4)製作的非晶矽,第二種是利用脈波調變電漿開啟時間及開關時間分別為25ms及75ms (pulse(25ms/75ms))所製作的非晶矽。
RAMAN光譜實驗結果顯示這兩種多層膜結構基本上均可避免pc-Si:H/a-Si:H多層膜形成微晶,使得薄膜保有原晶矽的特性,但詳細分析RAMAN光譜的橫向光學模(TO)顯示,以R = 25原晶矽多層膜為例,兩種方式製作的多層膜結晶比(XC)皆為0,但以第二種方式製作的多層膜其RAMAN光譜在500 cm-1 仍有少許grain boundary訊號,因此其阻斷效果較使用低氫稀釋比(R = 4)製作的薄膜差。以第一種方式製作的多層膜太陽電池較第二種方式製作的多層膜太陽電池,具有較高的光電流、轉換效率及較低的理想因子。
以R = 4非晶矽做為阻斷層並以R = 25做為原晶矽子層所製作的pc-Si:H/a-Si:H多層膜太陽電池,效率可以達到5.75 %的初始轉換效率,在96小時光照後其衰退值約為21%,低於一般傳統非晶矽太陽電池的光照衰退(大於25%),證實原晶矽多層膜確實可以降低太陽電池的光照衰退。

Hydrogenated protocrystalline-Silicon (pc-Si:H) thin-film solar cells exhibit more stable structure which can reduce the photodegradation behaviors. The pc-Si:H films typically deposited by moderate hydrogen dilution ratios (R = H2/SiH4), and the thickness shall be limited in the incubation layer to avoid microcrystalline nucleation.
In this thesis, a 13.56 MHz plasma-enhanced chemical vapor deposition with changing hydrogen dilution ratios from R = 25 to 60 are use to deposit pc-Si:H films. In order to maintain the pc-Si:H structural properties, pc-Si:H/a-Si:H multilayers are fabricated, in which pc-Si:H sublayers and hydrogenated amorphous silicon (a-Si:H) sublayers are periodically deposited. The role of a-Si:H sublayers is to interrupt the continuous growth and limit the thickness of pc-Si:H sublayers. The a-Si:H sublayers are deposited by two methods, one is fabricated by low hydrogen dilution ratio R = 4, and the second is deposited by pulse-wave modulation plasma with turn-on time (TON = 25 ms) and plasma turn-off time (TOFF = 75 ms).
In general, RAMAN spectra indicate that two kinds of pc-Si:H/a-Si:H multilayers can avoid the formation of microcrystalline phase in the film. The protocrystalline phase is maintained by these multilayers. However, in a detail analysis of the TO modes of RAMAN spectra, there are very small 500 cm-1 signals in the a-Si:H films deposited by TON(25ms)/TOFF(75ms), the blocking effect of these films is worse than the a-Si:H films deposited by R = 4. The pc-Si:H/a-Si:H multilayers solar cells with a-Si:H sublayers deposited by R = 4 have the better performance of high photo current, transfer efficiency and lower ideal factor.
The pc-Si:H/a-Si:H multilayers solar cells with pc-Si:H sublayers and a-Si:H sublayers deposited by R = 25 and R = 4 respectively, has 5.75 % initial efficiency, and about 21 % photodegradation rate after 96 hr light illumination, which is lower than that typical a-Si:H solar cells (> 25 %). pc-Si:H/a-Si:H multilayers solar cells can reduce the photodegradation rate.
URI: http://hdl.handle.net/11455/8371
其他識別: U0005-2608200822030500
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.