Please use this identifier to cite or link to this item:
標題: 球型機器人之系統設計與運動控制
System Design and Motion Control of a Ball Robot
作者: 莊明翰
Juang, Ming-Han
關鍵字: ball;球型機器人;robot;ballbot;balance;動態平衡
出版社: 電機工程學系所
引用: [1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamical stable single-wheeled mobile robot with inverse mouse-ball drive,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 2884-2889, 2006. [2] M. Kumagai, T. Ochiai, “Development of a Robot Balancing on a Ball,” Proceedings of 2008 International Conference on Control, Automation and Systems pp.433-438, Oct.2008 [3] C. W. Liao, C. C. Tsai, Y. Y. Li, C.-K. Chan, “Dynamic modeling and sliding-mode control of a ball robot with inverse mouse-ball drive,” Proceedings of SICE 2008, Tokyo, Japan, pp. 2951-2955, 2008. [4] R. Hollis, “Ballbots,” Scientific American Magazine, pp. 72-77, Oct. 2006. [5] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435, 1998. [6] C. M. Lin and Y.J. Mon, “Decoupling control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 593-598, 2005. [7] Wang, X.D. Liu, and J.Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Proceeding of Control Theory and Applications, vol. 1, no. 1, pp. 163-172, 2007. [8] R.-J. Wai, M.-A. Kuo, and J.-D. Lee, “Cascade Direct Adaptive Fuzzy Control Design for a Nonlinear Two-Axis Inverted-Pendulum Servomechanism,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 38, no. 2, pp. 439–454, Apr. 2008. [9] X.-Z. Lai, J.-H. She, S. X. Yang, and M. Wu, “Comprehensive Unified Control Strategy for Underactuated Two-Link Manipulators,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 39, no. 2, pp. 389–398, Apr. 2009. [10] C. Sabourin and O. Bruneau, “Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks,” Robotics and Autonomous Systems, vol. 57, pp. 371–383, 2009. [11] D. Tlalolini, C. Chevallereau, and Y. Aoustin, “Comparison of different gaits with rotation of the feet for a planar biped,” Robotics and Autonomous Systems, vol. 51, pp. 81–99, 2005. [12] Baruh, Analytical Dynamics, New York: McGraw-Hill Inc., 1999. [13] W.Wang, J.Yi, D.Rhao, and D.Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEEE Proc. of Control Theory and Applications, vol.151, pp. 683-690, Nov.2004. [14] J. S. Shaw and B. K. Huang,“Balancing and trajectory tracking control for ball robot,”in Proc. of The 27th Chinese Institute of Engineers Conference, B17-0046, Nov.2007. [15] J. H. Williams, Jr., Fundamentals of Applied Dynamics. John Wiley & Sons Inc. 1996. [16] K. J. Astrom and B. Wittenmark, Adaptive control, 2nd Ed., Addiosn Wesley, 1995. [17] C.C Tsai, S.C. Lin and W.L. Luo, “Adaptive steering of a self-balancing two-wheeled transporter, ”in Proc. 2006 CACS Automatic Control, Tamsui, Taiwan, Nov. 10-11,2006. [18] H. K. Khalil, Nonlinear systems, 3rd Ed., Prentice Hall, 2002. [19] Y. H. Fan, Motion control and planned navigation of a two-wheeled self-balancing mobile platform for human symbiotic robots, M.S. Thesis. Department of Electrical Engineering, National Chung-Hsing University, Taichung, Taiwan, July 2008. [20] Y. Hosoda, S. Egawa, J. Tamamoto, K. Yamamoto, R.Nakamura and M. Togami, “Basic design of human-symbiotic robot EMIEW,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp.5079-5084, Oct. 9-15, 2006. [21] [22] J. Z. Sasiadek and Q. Wang, “Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle,” in Proc. the 1999 IEEE Conference on Robotics and Automation, Detroit, Michigan, pp. 2970-2975, May 1999. [23] J. S. Shaw and P.K. Huang, “球型機器人智慧型控制策略,” in Proc. of 2009 National Symposium on System Science and Engineering, Tamkang University, Tamsui, Taiwan, pp. 1167-1171, 26 June, 2009. [24] 陳永平, 可變結構控制設計,全華科技出版社,1999年。 [25] 林容益, DSP數位化機電控制 (TMS320 F281X 系統),全華科技出版社,2008年。 [26] J. S. Shaw and P.K. Huang, “balancing and Tracking control of ballbot, ” 中國機械工程學會第24屆全國學術研討會論文集,pp. 1999-2004, 23-24 Nov. 2007.
本論文研究包含了球型機器人的系統設計、動態模型建立並使用逆向滑鼠驅動機構來達到運動控制。本動態模型是根據Lagrangian mechanics建立的,其有效性之驗證可透過將本模型簡化來得到前人所提出的簡化模型。透過所提出的完整模型並以自平衡和位置控制為目標,提出雙迴路線性化控制器。而此控制器是由內迴路的PI控制器與外迴路的線性二次調節器以及一前饋補償建構而成的。為了克服較大的靜摩擦力、黏滯摩擦力與外部干擾,更進一步提出適應倒逆步滑動模式控制器,使機器人可以達到強健的自平衡與位置控制。由電腦模擬和實驗結果可證實所提的兩種運動控制器都具有滿意的控制行為來達成自平衡與位置控制,而適應倒逆步滑動模式控制器比雙迴路線性化控制器呈現出更好的效能。

This thesis presents methodologies and techniques for system design, dynamic modeling and motion control of a ball robot with an inverse mouse-ball driving mechanism actuated by two independent brushless motors simultaneously. A novel dynamic model of the robot travelling over a flat terrain is established according to Lagrangian mechanics, and the model is shown valid by reducing such a model to a known simplified model. With this complete model and control goals of station keeping and position control, a two-loop controller with a feedforward compensator is constructed by a synthesis of a PI-based controller for inner-loop and a linear quadratic regulator for outer-loop. To overcome big Coulomb friction, an adaptive backstepping sliding-mode controller is proposed to accomplish robust self-balancing and position control (regulation) of the robot with exogenous disturbances, Coulomb and viscous frictions. Simulation and experimental results indicate that both proposed motion controllers are capable of providing appropriate control actions to satisfactorily achieve self-balancing and position control, but the adaptive backstepping sliding-mode controller outperforms the two-loop controller.
其他識別: U0005-1108200914222100
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.