Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8465
DC FieldValueLanguage
dc.contributor黃國勝zh_TW
dc.contributor李祖聖zh_TW
dc.contributor.advisor蔡清池zh_TW
dc.contributor.author莊明翰zh_TW
dc.contributor.authorJuang, Ming-Hanen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:37Z-
dc.date.available2014-06-06T06:41:37Z-
dc.identifierU0005-1108200914222100zh_TW
dc.identifier.citation[1] T. B. Lauwers, G. A. Kantor, and R. L. Hollis, “A dynamical stable single-wheeled mobile robot with inverse mouse-ball drive,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 2884-2889, 2006. [2] M. Kumagai, T. Ochiai, “Development of a Robot Balancing on a Ball,” Proceedings of 2008 International Conference on Control, Automation and Systems pp.433-438, Oct.2008 [3] C. W. Liao, C. C. Tsai, Y. Y. Li, C.-K. Chan, “Dynamic modeling and sliding-mode control of a ball robot with inverse mouse-ball drive,” Proceedings of SICE 2008, Tokyo, Japan, pp. 2951-2955, 2008. [4] R. Hollis, “Ballbots,” Scientific American Magazine, pp. 72-77, Oct. 2006. [5] J. C. Lo and Y. H. Kuo, “Decoupled fuzzy sliding-mode control,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435, 1998. [6] C. M. Lin and Y.J. Mon, “Decoupling control by hierarchical fuzzy sliding-mode controller,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 593-598, 2005. [7] Wang, X.D. Liu, and J.Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Proceeding of Control Theory and Applications, vol. 1, no. 1, pp. 163-172, 2007. [8] R.-J. Wai, M.-A. Kuo, and J.-D. Lee, “Cascade Direct Adaptive Fuzzy Control Design for a Nonlinear Two-Axis Inverted-Pendulum Servomechanism,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 38, no. 2, pp. 439–454, Apr. 2008. [9] X.-Z. Lai, J.-H. She, S. X. Yang, and M. Wu, “Comprehensive Unified Control Strategy for Underactuated Two-Link Manipulators,” IEEE Transactions on Systems., Man, and Cybernetics-Part-B, vol. 39, no. 2, pp. 389–398, Apr. 2009. [10] C. Sabourin and O. Bruneau, “Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks,” Robotics and Autonomous Systems, vol. 57, pp. 371–383, 2009. [11] D. Tlalolini, C. Chevallereau, and Y. Aoustin, “Comparison of different gaits with rotation of the feet for a planar biped,” Robotics and Autonomous Systems, vol. 51, pp. 81–99, 2005. [12] Baruh, Analytical Dynamics, New York: McGraw-Hill Inc., 1999. [13] W.Wang, J.Yi, D.Rhao, and D.Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems,” IEEE Proc. of Control Theory and Applications, vol.151, pp. 683-690, Nov.2004. [14] J. S. Shaw and B. K. Huang,“Balancing and trajectory tracking control for ball robot,”in Proc. of The 27th Chinese Institute of Engineers Conference, B17-0046, Nov.2007. [15] J. H. Williams, Jr., Fundamentals of Applied Dynamics. John Wiley & Sons Inc. 1996. [16] K. J. Astrom and B. Wittenmark, Adaptive control, 2nd Ed., Addiosn Wesley, 1995. [17] C.C Tsai, S.C. Lin and W.L. Luo, “Adaptive steering of a self-balancing two-wheeled transporter, ”in Proc. 2006 CACS Automatic Control, Tamsui, Taiwan, Nov. 10-11,2006. [18] H. K. Khalil, Nonlinear systems, 3rd Ed., Prentice Hall, 2002. [19] Y. H. Fan, Motion control and planned navigation of a two-wheeled self-balancing mobile platform for human symbiotic robots, M.S. Thesis. Department of Electrical Engineering, National Chung-Hsing University, Taichung, Taiwan, July 2008. [20] Y. Hosoda, S. Egawa, J. Tamamoto, K. Yamamoto, R.Nakamura and M. Togami, “Basic design of human-symbiotic robot EMIEW,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp.5079-5084, Oct. 9-15, 2006. [21] http://cricket.csail.mit.edu/ [22] J. Z. Sasiadek and Q. Wang, “Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle,” in Proc. the 1999 IEEE Conference on Robotics and Automation, Detroit, Michigan, pp. 2970-2975, May 1999. [23] J. S. Shaw and P.K. Huang, “球型機器人智慧型控制策略,” in Proc. of 2009 National Symposium on System Science and Engineering, Tamkang University, Tamsui, Taiwan, pp. 1167-1171, 26 June, 2009. [24] 陳永平, 可變結構控制設計,全華科技出版社,1999年。 [25] 林容益, DSP數位化機電控制 (TMS320 F281X 系統),全華科技出版社,2008年。 [26] J. S. Shaw and P.K. Huang, “balancing and Tracking control of ballbot, ” 中國機械工程學會第24屆全國學術研討會論文集,pp. 1999-2004, 23-24 Nov. 2007.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8465-
dc.description.abstract本論文研究包含了球型機器人的系統設計、動態模型建立並使用逆向滑鼠驅動機構來達到運動控制。本動態模型是根據Lagrangian mechanics建立的,其有效性之驗證可透過將本模型簡化來得到前人所提出的簡化模型。透過所提出的完整模型並以自平衡和位置控制為目標,提出雙迴路線性化控制器。而此控制器是由內迴路的PI控制器與外迴路的線性二次調節器以及一前饋補償建構而成的。為了克服較大的靜摩擦力、黏滯摩擦力與外部干擾,更進一步提出適應倒逆步滑動模式控制器,使機器人可以達到強健的自平衡與位置控制。由電腦模擬和實驗結果可證實所提的兩種運動控制器都具有滿意的控制行為來達成自平衡與位置控制,而適應倒逆步滑動模式控制器比雙迴路線性化控制器呈現出更好的效能。zh_TW
dc.description.abstractThis thesis presents methodologies and techniques for system design, dynamic modeling and motion control of a ball robot with an inverse mouse-ball driving mechanism actuated by two independent brushless motors simultaneously. A novel dynamic model of the robot travelling over a flat terrain is established according to Lagrangian mechanics, and the model is shown valid by reducing such a model to a known simplified model. With this complete model and control goals of station keeping and position control, a two-loop controller with a feedforward compensator is constructed by a synthesis of a PI-based controller for inner-loop and a linear quadratic regulator for outer-loop. To overcome big Coulomb friction, an adaptive backstepping sliding-mode controller is proposed to accomplish robust self-balancing and position control (regulation) of the robot with exogenous disturbances, Coulomb and viscous frictions. Simulation and experimental results indicate that both proposed motion controllers are capable of providing appropriate control actions to satisfactorily achieve self-balancing and position control, but the adaptive backstepping sliding-mode controller outperforms the two-loop controller.en_US
dc.description.tableofcontentsContents Acknowledgements i Chinese Abstract ii English Abstract iii Contents iv List of Figures viii List of Tables xii Nomenclature xiii List of Acronyms xiv Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Literature Review 3 1.3 Motivation and Objectives 4 1.4 Main Contributions 5 1.5 Thesis Organization 5 Chapter 2 Mechatronic System Design and Control Architecture 7 2.1 Introduction 7 2.2 System Structure and Mechatronic Design 7 2.2.1 Description of the Ball Robot System 7 2.2.2 Mobile Platform Design : Inverse mouse-ball drive mechanism 9 2.2.3 DC Servomotor Drive 13 2.3 Description of Key Components: Controller and Sensors 14 2.3.1 Digital Signal Processor 14 2.3.2 Dual-axis Tilt Sensor 16 2.3.3 Dual-Axis Gyroscope 20 2.3.4 Rotary Encoder 21 2.3.5 Cricket Indoor Location System 22 2.3.5.1 Description of the Cricket Indoor Location System 22 2.3.5.2 Robot Position Estimation Using Least Square Method 26 2.3.5.3 Robot Orientation Estimation Using Least Square Method 28 2.3.5.4 Real-Time Cricket Global Pose Initialization Algorithm 29 2.3.5.5 Experiment Result of Global Pose Initialization 30 2.3.6 Power Supply System 33 2.3.7 Signals Flow 34 2.4 Control Architecture 35 2.4.1. Torque Transformation 35 2.4.2 Digitalization of Torque-to-Speed Conversion 36 2.4.3 Dead-Reckoning 38 2.4.4 Signal Fusion 38 2.5 Concluding Remarks 40 Chapter 3 Dynamic Modeling and Validation 41 3.1 Introduction 41 3.2 Derivation of the Nonlinear Mathematical Model 41 3.3 Model Validation 48 3.4 Parameters Determination 49 3.5 Concluding Remarks 51 Chapter 4 Linearized Controller Design and Experiments 52 4.1 Introduction 52 4.2 Finding the linearized model and two-loop control architecture 53 4.3 PI controller design for inner loop 57 4.3.1 Finding and 57 4.3.2 Obtaining and 59 4.4 Linear Quadratic Regulator Design for Outer Loop 60 4.5 Simulations and Discussion 61 4.5.1 Balancing and Station Keeping 62 4.5.2 Straight-Line Path-Following 64 4.5.3 Point-To-Point Stabilization 65 4.6 Experimental Results and Discussion 66 4.6.1 Balancing and Station Keeping 68 4.6.2 Position Control 70 4.7 Concluding Remarks 73 Chapter 5 Adaptive Backstepping Sliding-Mode Controller Design and Experiments 74 5.1 Introduction 74 5.2 Adaptive Backstepping Sliding-Mode Controller Design 75 5.2.1 Adaptive Sliding-Mode Controller Design for and 76 5.2.2 Adaptive Sliding-Mode Controller Design for and 80 5.3 Simulations and Discussion 85 5.3.1 Balancing and Station Keeping 86 5.3.2 Straight-line path-following 88 5.3.3 Point-To-Point Stabilization 91 5.4 Experimental results and Discussion 94 5.4.1 Balancing and Station Keeping 94 5.4.2 Position Control 96 5.5 Concluding Remarks 98 Chapter 6 Conclusions and Future Work 99 6.1 Conclusions 99 6.2 Future Work 100 References 102en_US
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108200914222100en_US
dc.subjectballen_US
dc.subject球型機器人zh_TW
dc.subjectroboten_US
dc.subjectballboten_US
dc.subjectbalanceen_US
dc.subject動態平衡zh_TW
dc.title球型機器人之系統設計與運動控制zh_TW
dc.titleSystem Design and Motion Control of a Ball Roboten_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.