Please use this identifier to cite or link to this item:
標題: Cyclic creep and fatigue testing of nanocrystalline copper thin films
關鍵字: Stress–strain measurement of copper thin films;Mechanical behavior of nanocrystalline thin films;Micromechanical testing;Cyclic testing of thin films
Project: Surface and Coatings Technology, Volume 215, Page(s) 393-399.
This study performed microtensile testing to investigate the mechanical properties of cyclic fatigue in freestanding nanocrystalline copper thin films of sub-micrometer thickness. We observed the mechanical response associated with tension–tension fatigue under various stress amplitudes and mean stress conditions at cyclic loading frequencies of up to 10 Hz. Experiments were carried out using feedback to provide load control for sputter deposited 300, 500, and 700 nm Cu thin films. Cu films were deposited on the Si substrate and then separated from the substrate following the completion of processing. The feedback control maintains the stress within the film at a constant value, even when the stress threatens to drop due to plastic deformation during the course of the experiment. As anticipated, the number of loading cycles to failure exceeded 106 under low mean loads at low amplitudes with an increase in the load leading to a decrease in the number of cycles to failure. These results provide clear evidence of cyclic creep rate dependence and changes in the failure mechanism from crack formation to extended plasticity following a decrease in the mean load or load amplitude. Moreover, we observed how the fatigue and cyclic creep of the tested films depended on the length scale.
DOI: 10.1016/j.surfcoat.2012.08.089
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.