Please use this identifier to cite or link to this item:
標題: 最大相關數值為二之光纖分碼多工系統最佳二維碼之設計
A New Construction of Optimal 2D Codes With Maximum Cross-Correlation Value of Two for Fiber-Optic CDMA Systems
作者: 林雨潔
Lin, Yu-Chieh
關鍵字: 二維光纖碼;two-dimensional optical codes;光纖正交碼;光纖分碼多工;二次同餘碼;近似最佳化;optical orthogonal code (OOC);optical code-division multiple access;quadratic congruence code;asymptotically optimal
出版社: 電機工程學系所
引用: [1] L. Tančevski and I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.S. P. Wan and Y. Hu, “Two-dimensional optical CDMA differential system with prime/OOC codes,” IEEE Photon. Technol. Lett., vol. 10, no. 12, pp.1373-1375, Dec. 2001. [2] G.-C. Yang and W.C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997 [3] K. Yu, J. Shin, and N. Park, “Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrors fiber delay lines, ” IEEE Photon. Technol. Lett., vol. 12,pp. 1278-1280, Sep. 2000. [4] G.-C. Yang and W.C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Norwood, MA, 2002 [5] R.M.H Yim, L.R. Chen, and J. Bajcsy, “Design and performance of 2D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol.14, no. 5, pp. 714-716, May 2002. [6] W.C. Kwong, G.-C. Yang, V. Baby, C.-S. Brès, and P.R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutation for ptical CDMA,” IEEE Trans. Commun., vol. 53, no. 1, pp. 117-123, Jan 2005. [7] F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical orthogonal codes Design, Analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 594-604, May 1983. [8] H. Fathallah, L.A. Rusch, and S. Laroschelle, “Passive optical fast frequency- hop CDMA communication system,” J. Lightwave Technol., vol. 17, pp. 397-405, Mar 1999. [9] L.R. Chen, “Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, pp 1233-1235, Nov. 2001. [10] P.C. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A comparative study of the performance of seven- and 63- chip optical code-division multiple- access encoder and decoder based on the superstructured fiber Bragg grating,” J. Lightwave Technol., vol. 19, pp. 1352-1365, Sep. 2001. [11] J.H. Lee, P.C. Teh, P. Petropoulos, M. Ibsen, D. Richardson, “A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction ,” Lighthwave Technol., vol. 20, pp. 36-46, Jan. 2002. [12] S. Yegnanarayanan, A.S. Bhushan, and B. Jalali, “Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, pp. 573-576, May 2000. [13] G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 96-106, Jan. 1995. [14] G.-C. Yang, “Some new families of optical orthogonal codes for code division multiple-acess fiber-optic network ,” IEEE Proc. Commun.., vol. 42, no. 6, pp. 363-367, Dec. 1995. [15] J.-H. Tien, G-.C. Yang, C.-Y. Chang, and W.C. Kwong, “Design and analysis of 2-D code with the maxium cross- correlation value of two for optical CDMA,” J. Lightwave Technol., vol.26, no.22, 3632-3639, Nov. 2008. [16] T.-C. Wang, G.-C. Yang, C.-Y. Chang, and W.C. Kwong, “A New Family of 2D codes for fiber-optic CDMA system with and without the chip-synchronous assumption,” J. Lightwave Technol., vol.27, no.14, pp. 2612-2620, Jul. 2009. [17] J.-J. Chen and G.-C. Yang, “CDMA fiber-optic systems with optical hard limiters,” Lighthwave Technol., vol. 19, no. 7, pp. 950-958, Jul. 2001. [18] J.A. Salehi and C.A. Brackett, “Code division multiple-axess techniques in optical fiber networks-part II: system performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989. [19] E. Narimanov, W.C. Kwong, G.-C. Yang, and P.R. Prucnal, “Shifted carrier-hopping prime codes for multicode keying in wavelength-time O-CDMA,” IEEE Trans. Commun., vol. 53, no. 12, pp. 2150-2156, Dec. 2005. [20] T.H. Shake, “Performance of optical CDMA against eavesdropping,” Lighthwave Technol., vol. 23, no. 2, pp. 655-670, Feb. 2005. [21] M. Azizoglu, J. Salehi, and Y. Li, “Optical CDMA via temporal codes,” IEEE Trans. Commun., vol. 40, no. 7, pp. 1162-1170, Jul. 1992. [22] H.M. Kwon, “Optical orthogonal code-division multiple-access system-Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470-2479, Jul. 1994. [23] H. Gibbs, Optical Bistability: Controlling Light with light. New York :Academic, 1985. [24] J. Jwell, M. Rushford, and H. Gibbs, “Use of a single nonlinear Fabry-Perot etalon as optical logic gates,” Appl. Phys. Lett., vol. 44, no.2, pp. 172-174, Jan. 1984. [25] J.-H Wu and J. Wu, “Synchronous fiber-optic CDMA using hard-limiter and BCH codes,” Lighthwave Technol., vol. 13, pp. 1169-1176, Jun. 1995. [26] C.-C. Hsu and G.-C. Yang, and W.C. Kwong, “Hard-limiting performance analysis of 2-D optical codes under the chip-asynchronous assumption,” IEEE Trans. Commun., vol. 56, no. 56, pp. 762-768, May 2008. [27] G.-C. Yang and W.C. Kwong, “Two-dimensional spatial signature patterns,” IEEE Trans. Commun., vol. 44, no. 2, pp. 184-191, Feb. 1996. [28] F. Chung, J. Salehi, and V. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inform. Theory, vol. 35, pp. 595-604, May 1989. [29] H. Chung and P.V. Kumar, “Optical orthogonal codes-New bounds and an optimal construction,” IEEE Trans. Inform. Theory, vol. 36, pp. 866-873, Jul. 1990. [30] P.R. Prucnal, M. Santoro, and Ting Fan, “Spread spectrum fiber-optical area network using optical processing,” IEEE J. Lightwave Technol., vol. 4, no. 5, pp. 547-554, May 1986. [31] P.R. Prucnal and M. Santoro, “Asynchronous fiber optic local area network using CDMA and optical correlation,” IEEE Proc., vol. 75, no. 9, pp. 1336-1338, Sep. 1987. [32] W.C. Kwong and P.R. Prucnal, “'Synchronous' CDMA demonstration for fiber-optical networks with optical processing,” Electronics Letters, vol. 26, no. 24, pp. 1990-1992, Nov. 1990. [33] J.A. Salehi, “Emerging optical code-division multiple access communication systems,” IEEE Network magazine, vol. 3, no. 2, pp. 31-39, Mar. 1989. [34] S. Mashhadi and J.A. Salehi, “ Code division multiple-access techniques in optical fiber networks part III: optical and logic gate receiver structure with generalized optical orthogonal codes,” IEEE Trans. Commun., vol. 54, no. 8, Aug. 2006. [35] S.V. Maric, Z.I. Kostic and E.L. Titlebaum, “A New Family of Optical Code Sequences For Use In Spread-Spectrum Fiber-Optic Local Area Networks,” IEEE Trans. Commun., vol 41, no. 8, pp 1217-1221, Aug 1993. [36] L.Tančevski and L.A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA sustems,” IEEE Commun. Lett., vol. 4, no. 8, pp. 264-266, Aug. 2000.

Two dimensional (2D) wavelength-time coding schemes have recently been studied for optical code-division multiple access (O-CDMA), supporting more numbers of subscribers and simultaneous users than their one-dimensional counterparts. In this thesis, a new family of 2D codes is proposed, which use “synchronized” quadratic congruence codes foe wavelength hopping and (n, w, 2, 2) optical orthogonal codes for time spreading. The new 2D codes provide larger (asymptotically optimal) code cardinality than other 2D codes by relaxing the maximum cross-correlation functions to two. Our study shows that the heavier code weight supported by our new 2D codes results in better performance than some of our previously proposed 2D codes which have the maximum cross-correlation value of one.
其他識別: U0005-1308200908484100
Appears in Collections:電機工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.