Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/84897
標題: An efficient and practical approach to obtain a better optimum solution for structural optimization
關鍵字: reducing search space;data mining;structural optimization
Project: Engineering Optimization, Volume 45, Issue 8, Page(s) 1005-1026.
摘要: 
For many structural optimization problems, it is hard or even impossible to find the global optimum solutionowing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed inthis research to obtain an optimum design which may not be global but is better than most local optimumsolutions that can be found by gradient-based search methods. The way to reach this goal is to find asmaller search space for gradient-based search methods. It is found in this research that data mining canaccomplish this goal easily. The activities of classification, association and clustering in data mining areemployed to reduce the original design space. For unconstrained optimization problems, the data miningactivities are used to find a smaller search region which contains the global or better local solutions. Forconstrained optimization problems, it is used to find the feasible region or the feasible region with betterobjective values. Numerical examples show that the optimum solutions found in the reduced design spaceby sequential quadratic programming (SQP) are indeed much better than those found by SQP in the originaldesign space. The optimum solutions found in a reduced space by SQP sometimes are even better than thesolution found using a hybrid global search method with approximate structural analyses.
URI: http://hdl.handle.net/11455/84897
DOI: 10.1080/0305215X.2012.713357
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.