Please use this identifier to cite or link to this item:
標題: Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting
關鍵字: Tool condition monitoring;SOM;Acoustic emission;LVQ;Micro-cutting tool
Project: Mechanical Systems and Signal Processing, Volume 34, Issues 1-2, Page(s) 353-366.
This study applies a self-organization feature map (SOM) neural network to acoustic emission (AE) signal-based tool wear monitoring for a micro-milling process. An experiment was set up to collect the signal during cutting for the system development and performance analysis. The AE signal generated on the workpiece was first transformed to the frequency domain by Fast Fourier transformation (FFT), followed by feature extraction processing using the SOM algorithm. The performance verification in this study adopts a learning vector quantification (LVQ) network to evaluate the effects of the SOM algorithm on the classification performance for tool wear monitoring. To investigate the improvement achieved by the SOM algorithms, this study also investigates cases applying only the LVQ classifier and based on the class mean scatter feature selection (CMSFS) criterion and LVQ. Results show that accurate classification of the tool wear can be obtained by properly selecting features closely related to the tool wear based on the CMSFS and frequency resolution of spectral features. However, the SOM algorithms provide a more reliable methodology of reducing the effect on the system performance contributed by noise or variations in the cutting system.
DOI: 10.1016/j.ymssp.2012.05.001
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.