Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8501
DC FieldValueLanguage
dc.contributor魏學文zh_TW
dc.contributor陳伯寧zh_TW
dc.contributor吳中實zh_TW
dc.contributor.advisor楊谷章zh_TW
dc.contributor.author陳鴻瑋zh_TW
dc.contributor.authorChen, Hung-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:41Z-
dc.date.available2014-06-06T06:41:41Z-
dc.identifierU0005-1407200919323100zh_TW
dc.identifier.citation[1] J.A. Salehi, “Code division multiple access techniques in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824- 833, Aug. 1989. [2] G.J. Foschini and G. Vnnucci, “Using spread-spectrum in a high-capacity fiberoptic local network,” IEEE/OSA J. Lightw. Technol., vol. 6, no. 3, pp. 370-390, March 1988. [3] P.R. Prucnal, M. Santoro, and T. Fan, “Spread spectrum fiber-optic local area network using optical processing,” IEEE/OSA J. Lightw. Technol., vol. 4, no. 5, pp. 547-554, May 1986. [4] W.C. Kwong, P.A. Perrier, and P.R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiberoptical local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625-1634, Nov. 1991. [5] G.-C. Yang, S.-Y. Lin, andW.C. Kwong, “MFSK/FH-SSMA wireless systems with double-media services over fading channels,” IEEE Trans. Veh. Technol., vol. 49, no. 3, pp. 900-910, Mar. 2000. [6] G.-C. Yang, and W.C. Kwong, “Design of multilength optical orthogonal codes for optical code-division multiple-access multimedia networks,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1258-1265, Aug. 2002. [7] V. Baby, W.C. Kwong, C.-Y. Chang, G.-C. Yang, and P.R. Prucnal, “Performance analysis of variable-weight multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1325-1333, Jul. 2007. [8] W.C. Kwong and G.-C. Yang, “Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate, multimedia services,” IEEE J. Sel. Areas Commun., vol. 22, no. 9, pp. 1640-1647, Nov. 2004. [9] H.-W. Chen, G.-C. Yang, C.-Y. Chang, and W.C. Kwong, “Spectral efficiency analysis of the multilengtth scheme in multirate, multimedia O-CDMA,” submitted to IEEE Trans. Commun. [10] W.C. Kwong and G.-C. Yang, “Multiple-length extended carrier-hopping prime codes for optical CDMA systems supporting multirate, multimedia services,” IEEE/OSA J. Lightw Technol., vol. 23, no. 11, pp. 3653-3662, Nov. 2005. [11] C.-Y. Chang, H.-T. Chen, G.-C. Yang, andW.C. Kwong, “Spectral efficiency study of QC-CHPCs in multirate optical CDMA system,” IEEE J. Sel. Areas Commun., vol. 25, no. 9, pp. 118-128, Dec. 2007. [12] S.V. Maric, O. Moreno, and C.J. Corrada, “Multimedia transmission in fiber-optic LANs using optical CDMA,” IEEE/OSA J. Lightw. Technol., vol. 14, no. 10, pp. 2149-2153, Oct. 1996. [13] S.V. Maric and V.K.N. Lau, “Multirate fiber-optic CDMA: System design and performance analysis,” IEEE/OSA J. Lightw. Technol., vol. 16, no. 1, pp. 9-17, Jan. 1998. [14] N.G. Tarhuni, T.O. Korhonen, E. Mutafungwa, and M.S. Elmusrati, “Multiclass optical orthogonal codes for multiservice optical CDMA networks,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 2, pp. 694-704, Feb. 2006. [15] E. Inaty, H.M.H. Shalaby, P. Fortier, and L.A. Tusch, “Multirate optical fast frequency-hopping CDMA system using power control,” IEEE/OSA J. Lightw. Technol., vol. 20, no. 2, pp. 166-177, Feb. 2002. [16] T. Miyazawa and I. Sasase, “Multirate and multiquality transmission scheme using adaptive overlapping pulse position modulator and power control in optical CDMA networks,” in Proc., IEEE Int. Conf. Networks (ICON), Singapore, Nov. 2004, pp. 127-131. [17] H. Yashima and T. Kobayashi, “Optical CDMA with time hopping and power control for multimedia networks,” IEEE/OSA J. Lightw. Technol., vol. 21, no. 3, pp. 695-702, Mar. 2003. [18] A.E. Wilner, P. Saghari, and V.R. Arbab, “Advanced techniques to increase the number of users and bit rate in OCDMA networks,” IEEE J. Sel. Topics Quant. Electron., vol. 13, no. 5, pp. 1403-1414, Sep./Oct. 2007. [19] E. Narimanov, W.C. Kwong, G.-C. Yang, and P.R. Prucnal, “Shifted carrierhopping prime codes for multicode keying in wavelength-time O-CDMA,” IEEE Trans. Commun., vol. 53, no. 12, pp. 2150-2156, Dec. 2005. [20] C.-Y. Chang, G.-C. Yang, and W.C. Kwong, “Wavelength-time codes with maximum cross-correlation function of two for multicode-keying optical CDMA,” IEEE/OSA J. Lightw. Technol., vol. 24, no. 3, pp. 1093-1100, Mar. 2006. [21] T.H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE/OSA J. Lightw. Technol., vol. 23, no. 2, pp. 655-670, Feb. 2005. [22] S. Galli, R. Menendez, R. Fischer, R.J. Runser, E. Narimanov, and P.R. Prucnal, “A novel method for increasing the spectral efficiency of optical CDMA,” in Proc., IEEE Global Commun. Conf., (GLOBECOM), St. Louis, Missouri, Nov. 28-Dec. 2, 2005. [23] P.R. Prucnal, Ed., Optical Code Division Multiple Access: Fundamentals and Applications, Taylor & Francis Books, New York, 2005. [24] V.J. Hernandez, W. Cong, J. Hu, C. Yang, N.K. Fontaine, R.P. Scott, Z. Ding, B.H. Kolner, J.P. Heritage, and S.J.B Yoo, “A 320-Gb/s capacity (32-User × 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” IEEE/OSA J. Lightw. Technol., vol. 25, no. 1, pp. 79-86, Jan. 2007. [25] J. Cao, R.G. Broeke, N.K. Fontaine, C. Ji, Y. Du, N. Chubun, K. Aihara, A.-V. Pham, F. Olsson, S. Lourdudoss, and S.J.B Yoo, “Demonstration of spectral phase O-CDMA encoding and decoding in monolithically integrated arrayed-waveguidegrating-based encoder,” IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2602-2604, Dec. 2006. [26] Z. Jiang, D. Seo, S. Yang, D.E. Leaird, R.V. Roussev, C. Langrock, M.M. Fejer,and A.M. Weiner, “Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at ~30 fJ/bit,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 705-707, Mar. 2005. [27] V. Baby, I. Glesk, R.J. Runser, R. Fischer, Y.-K. Huang, C.-S. Br´es, W.C. Kwong, T.H. Curtis, and P.R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 253-255, Jan. 2005. [28] Y.-K. Huang, V. Baby, P.R. Prucnal, C.M. Greiner, D. Iazikov, and T.W. Mossberg, “Integrated holographic encoder for wavelength-hopping/time-spreading optical CDMA,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 825-827, Apr. 2005. [29] C.-S. Br´es, T. Banwell, I. Glesk, P.R. Prucnal, and W.C. Kwong, “Optical pulse position modulation processing: Architecture and demonstration in an optical code division multiple access system,” J. Opt. Networking, vol. 5, no. 12, pp. 915-926, Dec. 2006. [30] R. Papannareddy and A.M. Weiner, “Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems,” IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1683-1685, Dec. 1999. [31] E.E. Narimanov and P. Mitra, “The channel capacity of a fiber optics communication system: perturbation theory,” IEEE/OSA J. Lightw. Technol., vol. 20, no. 3, pp. 530-537, Mar. 2002. [32] W.C. Kwong, G.-C. Yang, and C.-Y. Chang, “Wavelength-hopping time-spreading optical CDMA with bipolar codes,” IEEE/OSA J. Lightw. Technol., vol. 23, no. 1, pp. 260-267, Jan. 2005. [33] W.C. Kwong and G.-C. Yang, “Design of multilength optical orthogonal codes for optical CDMA multimedia networks,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1258-1265, Aug. 2002. [34] V. Baby, W.C. Kwong, C.-Y. Chang, G.-C. Yang, and P.R. Prucnal, “Performance analysis of variable-weight, multilength optical codes for wavelength-time O-CDMA multimedia systems,” IEEE Trans. Commun., in press. [35] G.-C. Yang, “Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements,” IEEE Trans. Commun., vol. 44, no. 1, pp. 47-55, Jan. 1996. [36] S. Topliss, D. Beeler, and L. Altwegg, “Synchronization for passive optical networks,” IEEE/OSA J. Lightw. Technol., vol. 13, no. 5, pp. 947-953, May 1995. [37] R.D. Feldman, T.H. Wood, J.P. Meester, and R.F. Austin, “Broadband upgrade of an operating narrowband single-filter passive optical network using coarse wavelength division multiplexing and subcarrier multiple access,” IEEE/OSA J. Lightw. Technol., vol. 16, no. 1, pp. 1-8, Jan. 1998. [38] H.-W. Hu, H.-T. Chen, G.-C. Yang, and W.C. Kwong, “Synchronous Walsh-Based bipolar-bipolar code for CDMA passive optical networks,” IEEE/OSA J. Lightw. Technol., vol. 25, no. 8, pp. 1910-1917, Aug. 2007. [39] T. O'Farrel and S. Lochmann, “Performance analysis of an optical correlator receiver for SIK DS-CDMA communication,” Electron. Lett.,, vol. 30, no. 1, pp. 63-65, Jan. 1994. [40] F.R.K. Chung, J.A. Salehi, and V.K. Wei, “Optical orthogonal codes: Design, analysis, and applicaions,” IEEE Trnas. Inf. Theory, vol. 35, no. 3, pp. 595-604, May 1989. [41] J.H. Tien, G.-C. Yang, C.-Y. Chang, and W.C. Kwong, “Design and analysis of 2-D codes with the maximum cross-correlation value of two for optical CDMA,” IEEE/OSA J. Lightw. Technol., vol. 26, no. 22, pp. 3632-3639, Nov. 2008. [42] G.-C. Yang and W.C. Kwong, “Performance analysis of extended carrier-hopping prime codes for optical CDMA,” IEEE Trans. Commun., vol. 53, no. 5, pp. 876- 881, May 2005. [43] G.-C. Yang and T.E. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp.96-106, Jan. 1995. [44] M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on sprctral encoding of noncoherent sources,” IEEE/OSA J. Lightw. Technol., vol. 13, no. 1, pp. 534-545, Mar. 1995. [45] P.C. Teh, P. Petropoulos, M. Ibsen, and D.J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” IEEE/OSA J. Lightw. Technol., vol. 19, no. 9, pp. 1352-1365, Sep. 2001. [46] L. Nguyen, T. Dennis, B. Aazhang, and J.F. Young, “Experimental demonstration of bipolar codes for optical spectral amplitude CDMA communication,” IEEE/OSA J. Lightw. Technol., vol. 15, no. 9, pp. 1647-1653, Sep. 1997. [47] J.-F. Huang and D.-Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal m-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sep. 2000. [48] C.F. Lam, D.T.K. Tong, M.C. Wu, and E. Yablonovitch, “Wxperimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1504-1506, Oct. 1998. [49] L. Tanˇcevski and I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994. [50] L. Tan˘cevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” IEEE/OSA J. Lightw. Technol., vol. 14, no. 12, pp. 2636-2647, Dec. 1996. [51] G.-C. Yang and W.C. Kwong, “Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997. [52] G.-C. Yang and W.C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Artech House, Norwood, MA, 2002. [53] S.P. Wan and Y. Hu, “Two-dimensional optical CDMA Differential system with prime/OOC codes,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1373-1375, Dec. 2001. [54] R.M.H. Yim, L.R. Chen, and J. Bajcsy, “Design and performance of 2-D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 714-716, May 2002. [55] W.C. Kwong, G.-C. Yang, and Y.-C. Liu, “A new family of wavelength-time optical CDMA codes utilizing programmable arrayed waveguide gratings,” IEEE J. Sel. Areas Commun., vol. 23, no. 8, pp. 1564-1571, Aug. 2005. [56] G.-C. Yang and W.C. Kwong, “A new class of carrier-hopping codes for codedivision multiple-access optical and wireless systems,” IEEE Commun. Lett., vol. 8, no. 1, pp. 51-53, Jan. 2004. [57] J.-J. Chen and G.-C. Yang, “CDMA fiber-optic systems with optical hard limiters,” IEEE/OSA J. Lightw. Technol., vol. 19, no. 7, pp. 950-958, Jul. 2001. [58] J.A. Salehi and C.A. Brackett, “Code division multiple access techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989. [59] C.-Y. Chang, C.-C. Wang, G.-Y. Yang, M.-F. Lin, Y.-S. Liu, and W.C. Kwong,“Frequency-hopping CDMA wireless communication systems using prime codes,” in Proc., IEEE 63rd Veh. Technol. Conf., Melboume, Australia, May 2006, pp. 1753-1757. [60] M.-F. Lin, G.-C. Yang, C.-Y. Chang, Y.-S. Liu, and W.C. Kwong, “Frequencyhopping CDMA with Reed-Solomon code sequences in wireless communications,”IEEE Trans. Commun., vol. 55, no. 11, pp. 2052-2055, Nov. 2007. [61] H.-W. Chen, G.-C. Yang, C.-Y. Chang, T.-C. Lin, and W.C. Kwong, “Spectral efficiency study of two multirate schemes for asynchronous optical CDMA,” to appear in IEEE/OSA J. Lightw. Technol. [62] M.D. Greenberg, Advanced Engineering Mathematics, Prentice Hall, Englewood Cliffs, New Jersey, 1988.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8501-
dc.description.abstract在光纖分碼多工系統中有許多多速率的技術用來支援多媒體的服務,例如多重碼和多碼鍵移的方法。在多重碼的方法中,每個用戶在同個時間中傳輸多個碼來代表多個傳輸的資料。然而同時所傳輸碼的數目與資料的速率有關。而相對於多碼鍵移的方法,多碼鍵移方法只在同一時間傳輸單一個碼,而每個碼用來表示帶有數個位元資料的符元。資料的速率可以透過改變符元的大小來改變傳輸資料的位元數,在這篇論文中,這二種非同步技術的頻寬效益分析被推導出來用來做為效能與效益的整體比較,而傳統的單速率開關鍵移方法的頻寬效益分析用來做為比較的基礎。實驗結果顯示出多重碼方法的頻寬效益比傳統的單速率開關鍵移方法好,而多碼鍵移的方法的頻寬效益在某些情況下比傳統的單速率開關鍵移方法來的好。 近年來在光纖分碼分工系統中,除了多重碼及多碼鍵移的方法之外,多碼長方法用來傳輸多速率和多媒體的服務。在多碼長方法中,利用指定每個用戶不同碼長來達到提供不同傳輸速率的通訊服務,例如,較長的碼用來做為較慢速率的傳輸,較短的碼用來做為較快速率的傳輸。在這篇論文中,多碼長的頻寬效益分析被推導出來用來做為效能與效益的整體比較,而傳統的單速率開關鍵移方法的頻寬效益分析用來做為比較的基礎。在某些情況下,多碼長方法比傳統的單速率開關鍵移方法有較好的頻寬效益而且能夠支援更多同時使用的用戶數,就不管是頻寬效益或是效能來說,多碼長方法能夠利用支援較多高速率的用戶數來得到較多的好處。zh_TW
dc.description.abstractMultirate transmission techniques, such as multiple-code (MC) and multicode-keying (MK) schemes, have been proposed for asynchronous optical code-division multipleaccess (O-CDMA) systems supporting multimedia services. A user in the MC scheme transmits several codes at the same time to represent the transmission of several data bit ones. The number of parallel codes transmitted at a time is proportional to the user's bit rate and the number of data bit ones. While the MK scheme only transmits one code at a time, each code represents a symbol and each transmitted symbol represents multiple data bits. Data rate is varied by changing the symbol size, which, in turn, changes the number of data bits per baud, similar to MODEM communications. In this dissertation, the spectral efficiencies (SEs) of these two asynchronous schemes are derived for the comparison of their performances and efficiencies as a whole. The SE of the conventional single-rate on-off-keying (OOK) O-CDMA scheme is also derived for a baseline comparison. Our numerical results show that the MC scheme always has a better SE than the single-rate OOK scheme, while the MK scheme can have a better SE than the single-rate OOK scheme under certain conditions. Besides the MC and MK schemes, a “multilength transmission scheme has also been proposed for O-CDMA system supporting multirate, multimedia services. In this scheme, data rate is dynamically matched to the users' needs through the assignment of codes of different lengths, such that longer-length codes are used for slower-rate transmission and shorter-length codes are for a faster-rate transmission. Also in this dissertation, the SE of the multilength scheme is derived and compared to the conventional singlelength OOK O-CDMA scheme. The multilength scheme is found to support larger SE and total number of simultaneous users than the single-length scheme under certain conditions. Our study also shows, for the first time, that the multilength scheme gets more benefit, in terms of both SE and performance, from supporting more number of high-bit-rate (also higher priority) services than low-bit-rate ones.en_US
dc.description.tableofcontents1 Introduction............................................1 1.1 Introduction..........................................1 1.2 Organization of Dissertation..........................3 2 Background..............................................4 2.1 Introduction..........................................4 2.2 Wavelength-Time Codes.................................6 2.3 Multirate Transmission Schemes........................8 2.3.1 Multiple-Code Scheme................................8 2.3.2 Multicode-Keying Scheme.............................9 2.3.3 Multilength Scheme..................................11 3 SE Study of the Asynchronous MC and MK O-CDMA Schemes...12 3.1 Introduction..........................................12 3.2 Performance and SE Derivations with Arbitrary λc Codes.................................................13 3.2.1 Single-Rate OOK Scheme..............................13 3.2.2 Multiple-Code Scheme................................14 3.2.3 Multicode-Keying Scheme.............................14 3.2.4 Spectral Efficiency.................................15 3.3 Performance and SE Derivations with λc=1 Codes......16 3.3.1 Single-Rate Scheme..................................16 3.3.2 Multiple-Code Scheme................................17 3.3.3 Multicode-Keying Scheme.............................17 3.3.4 Spectral Efficiency Comparison .....................18 3.4 Numerical Results.....................................21 3.5 Summary...............................................25 4 SE Study of the Asynchronous Multilength O-CDMA Scheme..27 4.1 Introduction..........................................27 4.2 Performance Analysis and SE Definition................28 4.2.1 BEP of Single-length Codes in Single-rate O-CDMA....29 4.2.2 BEP of Multilength Codes in Multirate O-CDMA........29 4.3 Spectral Efficiency Derivation .......................30 4.3.1 General SE Comparison...............................32 4.3.2 Boundary Conditions for Double-length Scheme........32 4.3.3 Boundary Conditions for Triple-length Scheme........33 4.4 Numerical Results.....................................34 4.4.1 SE Comparison Under Same Total Cardinality..........40 4.5 Summary...............................................42 5 Conclusion..............................................43 A Computation of Ai in the MK scheme......................45 B Computation of C for Wavelength-Shifted CHPCs...........46 C BEP Approximation of the Multilength Scheme.............49 Bibliography..............................................51zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407200919323100en_US
dc.subjectMulticode keyingen_US
dc.subject多碼鍵移zh_TW
dc.subjectoptical code division multiple accessen_US
dc.subjectspectral efficiencyen_US
dc.subjectmultilength codesen_US
dc.subject光纖分碼多工系統zh_TW
dc.subject頻寬效益zh_TW
dc.subject多碼長zh_TW
dc.title在多速率及多媒體光纖分碼多工系統之頻寬效益分析zh_TW
dc.titleSpectral Efficiency Analysis of Multirate, Multimedia Optical CDMA Systemsen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.