Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8511
DC FieldValueLanguage
dc.contributor林中一zh_TW
dc.contributor李敏鴻zh_TW
dc.contributor.advisor張書通zh_TW
dc.contributor.author謝國暉zh_TW
dc.contributor.authorHsieh, Kuo-Huien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:42Z-
dc.date.available2014-06-06T06:41:42Z-
dc.identifierU0005-1607200911173200zh_TW
dc.identifier.citation參考文獻 [1] 陳柏源,國立東華大學材料科學與工程研究所碩士論文「AlGaAs/InGaAs/GaAs之高電子移動率電晶體之研製」九十五年六月 [2] 陳建中,國立交通大學工學院專班半導體材料與製程設備學程碩士論文「AlGaN/GaN 高電子遷移率電晶體(HEMTs)直流電性測試」九十七年十一月。 [3] 張育榮,國立中央大學電機工程研究所碩士論文「場效電板氮化鋁鎵/氮化鎵高電子移導率電晶體之製作與應用」九十五年六月。 [4] M.S. Shur and M.A. Kahn, “Wide Band Gap Semiconductors. Good Results and Great Expections”, in the Proceedings of 23d International Symposium on GaAs and Related Compounds, St. Petersburg, Russia, Sep. 22-28, 1996, Institute Phys. Conferrence Series, No.155, Chapter 2, pp. 25-32, M.S. Shur and R. Suris, Editors, IOP Publishing, London 1997. [5] R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Appl. Phys., Vol. 33, p665-667,1978. [6] T.Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jan. J. Appl. Phys., Vol. 19 L225-L227,1980. [7] K. Hirakawa, H. Sasaki, and J. Yoshion, Appl. Phys. Lett., Vol. 45, p253 1984. [8] 林正國,國立中央大學電機工程研究所碩士論文「異質結構高移導率電晶體模擬、製作與大訊號模型之建立」九十年六月。 [9] 洪秉杉,長庚大學電子工程學研究所「電場板技術在氮化鋁鎵/氮化鎵高電子移導率場效電晶體之研製與應用」97年6月。 [10] W. Shockley, H. Kroemer, Proc. “Theory of Wide-gao emitter for Transistors,”IRE, vol. 45, 1957, pp.1535. [11] S.M. Sze, Physics of Semiconductor Devices, 2nd Ed, John Wiley & Sons, 1985. [12] P.M. Asbeck, Bipolar Transistors in High-speed Semiconductor Devices by S.M. Sze, John Wiley & Sons, Inc. 1990. [13] M.J. Mondry and H. Kromer, “Heterojunction bipolar transistors using a (Ga,In)P emitter on a GaAs base, grown by molecular beam spitaxy,”IEEE Electron Dev. Lett. 6 (1985), pp.175-177. [14] 紀國鐘、蘇炎坤,「光電半導體技術手冊」台灣電子材料與元件協會出版,343-349頁。 [15] 陳建志,國立成功大學電機工程學系碩士論文「適用於三接收機網路分析儀之改良式TRL校正方式」92年6月。 [16] HP 8719D/8720D/8722D Network Analyzer User’s Guide, Hewlett-Packard Company, pp. 7-3, 1996.。 [17] 85052D 3.5 mm Economy Calibration Kit Operating and Service Manual,Agilent Technologies, pp. 2-5, 2002. [18] 呂學士編譯,「微波通訊半導體電路」全華圖書公司出版,4_1-4_33頁。 [19] 谢永桂,「超高速化合物半导体器件」宇航出版社,287-305頁。 [20] J. S. Su, W. C. Hsu, W. Lin, Y. S. Lin, “Enhanced real-space transfer in δ-dopedGaAs/In0.1Ga0.9As/In0.25Ga0.75As two-step channel heterojunctions”, J. Appl. Phys.,vol. 82, pp. 4076-4080, 1997. [21] R. T. Hsu, Y. S. Lin, J. S. Su, W. C. Hsu, Y. H. Wu, and M. J. Kao, “Study oftwo-dimensional hole gas Concentration and hole mobility in zinc delta-doped GaAsand pseudomorphic GaAs/In0.2Ga0.8As heterostructures”, Superlattices andMicrostructures, vol. 24, p. 175, 1998. [22] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, “High breakdown voltagesymmetric double δ-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobilitytransistor”, Appl. Phys. Lett., vol. 75, pp. 1616-1618, 1999. [23] Y. S. Lin, W. C. Hsu, and C. S. Yang, “Low-leakage-current and high-breakdown-voltage GaAs-based heterostructure field effect transistor withIn0.5(Al0.66Ga0.34)0.5P Schottky layer”, Appl. Phys. Lett., vol. 75, p. 3551, 1999. [24] Y. S. Lin, W. C. Hsu, C. Y. Yeh, and H. M. Shieh, “In0.34Al0.66As0.85Sb0.15/δ (n+)-InPheterostructure field-effect transistors,” Appl. Phys. Lett., vol. 76, p. 3124, 2000. [25] Y. J. Li, J. S. Su, Y. S. Lin, W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor”, Superlattice and Microstructures, vol. 28,p. 47, 2000. [26] Y. J. Chen, Y. W. Chen, Y. S. Lin, C. Y. Yeh, W. C. Hsu, “An improved In0.34Al0.66As0.85Sb0.15/InP heterostructure utilizing coupled δ-doping InP channel,” Jpn. J. Appl. Phys., vol. 40, p. L7, 2001.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8511-
dc.description.abstract高電子遷移率電晶體於高溫、高頻及高功率工作環境下之優秀表現使其得以廣泛的應用於軍用雷達系統、個人行動電話與基地台等用途上。本論文主要係驗證穩懋半導體公司所提供之pHEMT元件效能。在論文中,我們廣泛的研究高電子遷移率電晶體的特性,量測元件之電流-電壓特性曲線(I-V curves)與高頻特性 (fT , fmax)。實驗結果顯示,由直流特性曲線圖IDS-VDS可知當VGS=0.8V汲極飽和電流為72.5 mA/mm。另外,由IDS-VGS曲線可得元件之臨界電壓(Vth)為0.49 V。而元件操作在VDS=1.0 V時最大轉導係數(Gm)為320 mS/mm。本論文之研究,提供協助吾人更加了解與驗證高電子遷移率電晶體之元件物理特性、元件設計之最佳化分析,以及HEMT元件的相關應用。zh_TW
dc.description.abstractHigh Electron Mobility Transistors (HEMTs) technologies are widely used in military radars, mobile phones, and wireless base stations owing to their excellent performance of operating in high temperature, high frequency and large power. In this thesis, a more comprehensive study of the pseudomorphic-HEMT devices provided from the WIN Semiconductor Corporation was reported. We measured both of the DC (I-V curves) and high frequency characteristics (fT and fmax) of the devices. The results indicate that the drain saturation current is 72.5 mA/mm based on IDS-VDS DC characteristic measurement when there is no VGS bias. Furthermore, according to the IDS-VGS curves, the threshold voltage is 0.49 V and the max transconductance, Gm, is 320 mS/mm as VDS equals to 1.0 V. This study helps to demonstrate and understand the device physics, device optimization, and device application of high electron mobility transistors.en_US
dc.description.tableofcontents目次 誌謝 i 中文摘要 ii 英文摘要 iii 目次 iv 圖目次 v 表目次 vii 第一章 緖論 1 1.1高電子遷移率電晶體簡介 2 1.2 Pseudomorphic-HEMT簡介 3 1.3論文架構 4 第二章 元件基本原理與製作流程 5 2.1 Pseudomorphic-HEMT之工作原理 5 2.2 Pseudomorphic-HEMT製程流程簡述 8 第三章實驗方法與量測分析 12 3.1元件直流量測分析 15 3.2元件高頻量測分析 16 3.3 SOLT Calibration 18 第四章 結果與討論 25 第五章 結論 49 參考文獻 50zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1607200911173200en_US
dc.subjectI-V curvesen_US
dc.subject電流-電壓特性zh_TW
dc.subjectfT and fmaxen_US
dc.subject高頻特性zh_TW
dc.titleⅢ-Ⅴ族pHEMT元件之電性量測研究zh_TW
dc.titleElectrical Measurements of Ⅲ-Ⅴ Compound pHEMT Deviceen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.