Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8581
DC FieldValueLanguage
dc.contributor李敏鴻zh_TW
dc.contributor林中一zh_TW
dc.contributor.advisor貢中元zh_TW
dc.contributor.advisorChung-Yuan Kungen_US
dc.contributor.author韓季霖zh_TW
dc.contributor.authorHan, Chi-Linen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:49Z-
dc.date.available2014-06-06T06:41:49Z-
dc.identifierU0005-1908200913193300zh_TW
dc.identifier.citation[1] 蘇嘉禕、黃國威,「高頻元件量測技術」,奈米通訊,第七卷,第三期,第19-25頁,2000. [2] 俄羅斯Ioffe學院網頁,http://www.ioffe.ru/SVA/NSM/Semicond/ [3] H. Kroemer, “Theory of a wide-gap emitter for transistors”, Proceedings IRE,vol.45, pp.1535,1957. [4] R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiegmann, "Electron mobility in modulation-doped semiconductor superlattices", Appl. Phys. Lett., Vol.33, pp.665-667,1978. [5] William Liu, HANDBOOK OF III-V HETEROJUNCTION BIPOLAR TRANSISTOR, JOHN WILEY & SONS, 1998, pp. 138-141 [6] 劉博文,「半導體元件物理」,高立圖書股份有限公司,2001. [7] 穩懋半導體公司網頁,http://win.winfoundry.com/ch/tp_hemt.htm. [8] Drummond, T. J., Masselink, W. T., and Morkoc, H., “Modulation-doped GaAs/AlGaAs Heterojunction Field-effect Transistors: MODFETs”, Proceedings of IEEE, vol.74, no.6, pp.773-82,1986. [9] Stern, F., “Self-consistent Results for N-type Si Inversion Layers”, Physical Review Section B, vol.5, pp.4891,1972. [10]Salmer, G., Zimmermann, J., and Fauquembergue, R., “Modeling of MODFET''s”, IEEE Transactions on Microwave Theory and Techniques, vol.36,no.7., pp.1124-1140,1988. [11]陳永芳,「2000年諾貝爾物理獎簡介-半導體異質結構與積體電路」,物理雙月刊,第廿六卷,第六期,第533-538頁,2000. [12]林正國,「異質結構高移導率電晶體模擬、製作與大訊號模型之建立」,國立中央大學電機工程研究所碩士論文,2001. [13]吳叔軒,「以砷化鎵為基底之高電子遷移率電晶體之模擬」,國防大學理工學院電子工程研究所碩士論文,2008. [14]Zhou, X., and Tang, T., “Multi-level Modeling of GaAs High-speed DigitalCircuits”, The EEE Journal, School of Electrical and Electronic Engineering,Nanyang Technological University, vol.7, no.1, pp.58-64,1995. [15]ISE Integrated Systems Engineering AG, “ISE TCAD Release 10.0 DESSIS”, ISE Integrated Systems Engineering AG, Zurich, Switzerland, pp. 141-373, 2004.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8581-
dc.description.abstractⅢ-Ⅴ族化合物半導體材料所製成之元件,具有高載子遷移率(mobility)、工作頻率高、射頻損耗低、高線性度、低雜訊等優勢,使得Ⅲ-Ⅴ族化合物半導體元件成為現今射頻通訊應用之關鍵部份。pHEMT為假晶高電子遷移率電晶體之簡稱。它具有體積小、臨界電壓低、功率消耗低、製程要求較單純等特色,因此成為重要之射頻主動元件。 本研究使用TCAD模擬軟體進行元件模擬,以研究pHEMT元件直流特性與材料結構之關係。本研究所模擬之蕭基層/通道層/緩衝層材料結構有三種,其分別為AlGaAs/GaAs/GaAs、AlGaAs/InGaAs/GaAs與AlGaAs/InGaAs/AlGaAs。結果顯示在通道層以InGaAs取代GaAs,能增加二維電子氣濃度與提升元件電性表現。在緩衝層以AlGaAs取代GaAs,能增加緩衝層接面之導帶不連續情形。本研究也量測了一個實際pHEMT,其臨界電壓為0.43V,以及在VDS= 1.0V之最大轉導為320mS。 藉由TCAD模擬,能在進行元件製程前,便可預測元件特性。本研究結果可做為未來TCAD模擬參考,讓模擬之物理模型與實際元件特性能更為近似、吻合,以便進行特徵參數分析、資料庫建模與提昇高頻元件設計效率與品質。zh_TW
dc.description.abstractⅢ-Ⅴ compound semiconductor devices are key parts of RF communication applications because they have advantages of high electron mobility, high working frequency, low RF loss, high linearity and low noise. It is so-called “pHEMT” for full name “Pseudomorphic High Electron Mobility Transistor”. It becomes the important modern RF active device as it has some characteristics: small size, low threshold voltage, low power consumption and less process requirements. In this study, device simulations were performed by TCAD simulators to research relationship between pHEMT DC characteristics and material structures. Three kinds of Schottky layer/channel layer/buffer layer material structures were simulated. They were AlGaAs/GaAs/GaAs, AlGaAs/InGaAs/GaAs and AlGaAs/InGaAs/AlGaAs, respectively. The result indicated that device electrical performance improved and 2DEG increased in channel layer which was replaced GaAs by InGaAs. Replacing GaAs by AlGaAs in buffer layer could increase conduction band discontinuousness at buffer layer junction. A actual pHEMT was also measured in this study. The threshold voltage of the pHEMT was 0.43V. The maximum transconductance was 320mS when VDS was 1.0V. It is possible to predict device characteristics with TCAD simulation before fabrication. The study results can be reference for future TCAD simulations to make physics models simulated corresponding with device characteristics measured. Then we can proceed with parameters analysis, database modeling and improve high frequency device design efficiency and quality.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目次 iv 表目次 vi 圖目次 vii 第一章 緒論 1 1.1 前言 1 1.2 論文結構 3 第二章 pHEMT元件物理 5 2.1 GaAs HEMT的基本結構 5 2.2 HEMT的二維電子氣 5 2.3 假晶層異質結構 6 2.4 HEMT的工作原理 8 2.5 pHEMT的優勢 9 2.6 小結 9 第三章 TCAD模擬 10 3.1 模擬軟體介紹 10 3.2 典型pHEMT元件結構 12 3.3 建立pHEMT元件模擬結構 13 3.4 pHEMT模擬 14 3.5 TCAD模擬結果 15 3.6 小結 20 第四章 pHEMT電性量測 21 4.1 量測系統簡介 21 4.2 系統校正 22 4.3 元件量測 23 4.4 pHEMT IDS-VGS量測結果 23 4.5 pHEMT IDS-VDS量測結果 24 4.6 小結 25 第五章 結論與建議 26 參考文獻 27 附錄A Silvaco模擬 28 附錄B ISE-TCAD模擬程式碼 33zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908200913193300en_US
dc.subjectHEMTen_US
dc.subject高電子遷移率電晶體zh_TW
dc.subjectTCAD simulationen_US
dc.subjectⅢ-Ⅴ compounden_US
dc.subjecthigh-speed electronicsen_US
dc.subject模擬zh_TW
dc.subject三五族zh_TW
dc.subject高速電子元件zh_TW
dc.title三五族pHEMT之電性分析與量測zh_TW
dc.titleElectrical Analysis and Measurement of Ⅲ-ⅤCompound pHEMTen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.