Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8630
標題: 粒子濾波器在無人飛行載具軌跡追蹤之研究
Unmanned Aerial Vehicle Trajectory Tracking Using Particle Filter
作者: 王亮權
Wang, Liang-Chuan
關鍵字: unmanned aerial vehicle;無人飛行載具;trajectory tracking;particle filter;軌跡追蹤;粒子濾波器
出版社: 電機工程學系所
引用: [1] DOD Dictionary of Military Terms, http://www.dtic.mil/doctrine/jel/doddict/ [2] Borkowski and Kazimierz, “Transformation of Geocentric to Geodetic Coordinates Without Approximations,” Astrophysics and Space Science 139: 1-4. [3] Peter H. Dana, “Global Positioning System Overview,” Department of Geography, University of Texas at Austin, 1994, http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html [4] B. Etkin and L. D. Reid, “Dynamics of Flight: Stability and Control,” John Wiley and Sons, New York, NY, third edition, 1996. [5] P. Zarafshan, S. B.Moosavian, S. A. A. Moosavian, M. Bahrami, “Optimal control of an Aerial Robot.” Advanced Intelligent Mechatronics International Conference, pp. 1284-1289, July 2008. [6] N. J. Gordon, D. J. Salmond, A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” IEEE Proceedings F Radar and Signal Processing, Vol. 12, No. 2, pp. 107-113, Apr. 1993. [7] G.. Saini and S. N. Balakrishnan, “Adaptive critic based neurocontroller for autolanding of aircrafts,” Proceedings of the American Control Conference, 1997, Vol. 2, pp. 1081-1085, June 1997. [8] Rui Wang, Zhou Zhou, and Yanhang Shen, “Robust landing control and simulation for flying wing UAV,” Control Conference, Chinese, pp. 600-604, 2007. [9] S. Sawant, A. Davari, and Jin Wang, “Trajectory tracking of UAV using robust inventory control techniques,” Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, pp. 98-101, March 2005. [10] Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” IEEE International Conference on Robotics and Automation, Vol. 1, pp. 384-389, May 1990. [11] P. Zarafshan, S. B. Moosavian, S. A. A. Moosavian and M. Bahrami, “Optimal control of an aerial robot,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1284-1289, July 2008. [12] M. Morimoto, K. Uchiyama, Y. Shimada and A. Abe, “Adaptive attitude control with reduced number of estimated parameters for automatic landing system,” International Conference on Control, Automation and Systems, pp. 2865-2870, Oct. 2007. [13] Ren Wei, and R.W. Beard, “Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints,” IEEE Transactions on Control Systems Technology, Vol. 12, pp. 706-716, Sept. 2004. [14] N. P. Kakirde, A. Davari, and Jin Wang, “Trajectory tracking of unmanned aerial vehicle using servomechanism strategy,” Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, pp. 163-166, March 2005. [15] K.W. Iliff, “Parameter Estimation for Flight Vehicles,” Journal of Guidance, Control and Dynamics, Vol. 12, pp. 609-622, 1989. [16] R. V. Jategaonkar and E. Plaetschke, “Algorithms for AircraftParameter Estimation Accounting for Process and Measurement Noise,” Journal of Aircraft, Vol. 26, No. 4, pp. 360-372, 1989. [17] R. W. Johnson, S. Jayaram, L. Sun and J. Zalewski, “Distributed Processing Kalman Filter for Automated Vehicle Parameter Estimation - A Case Study,” Proceeding of IASTED International Conference on Applied Simulation and Modeling, 2000. [18] A.G. Kallapur, and S.G. Anavatti, “UAV Linear and Nonlinear Estimation Using Extended Kalman Filter,” International Conference on Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, pp. 250-254, 2006. [19] Babister A. W., “Aircraft Dynamic Stability and Response,” Elsevier 1980. [20] Stengel R. F., “Flight Dynamics,” Princeton University Press 2004. [21] MIT OPENCOURSEWARE, “Aerospace Dynamics,” in the Department of Aeronautics and Astronautics Engineering at Massachusetts Institute of Technology, 2003. [22] Peter H. Dana, “Global Positioning System Overview,” Department of Geography, University of Texas at Austin, 1994, http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html [23] Borkowski, Kazimierz (1987), “Transformation of Geocentric to Geodetic Coordinates Without Approximations,” Astrophysics and Space Science 139: 1-4. [24] B. Etkin and L. D. Reid, “Dynamics of Flight: Stability and Control,” John Wiley and Sons, New York, NY, third edition, 1996. [25] W. Ren and R. W. Beard, “Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints,” IEEE Transactions on Control Systems, Vol. 12, No. 5, pp. 706-716, Sep. 2004. [26] R. W. Beard, T. W. McLain, M. Goodrich, and E. P. Anderson, “Coordinated target assignment and intercept for unmanned air vehicles,” IEEE Trans. Robot. Automat., Vol. 18, pp. 911-922, Dec. 2002. [27] N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F Radar and Signal Processing, Vol. 12, No. 2, pp. 107-113, Apr. 1993. [28] Feng Zhao and Leonidas J. Guibas, “Wireless Sensor Networks: An Information Processing Approach,” 2004. [29] Sandy Barbour's XPlugin SDK Website, http://www.xpluginsdk.org/index.html [30] Yu-Hsu Chien, “The Realization of Autonomous Flight Control for UAV,” Department of Aeronautics and Astronautics, National Cheng Kung University, Aug, 2004. [31] Dr. M. C. Ertem “An Airborne Synthetic Vision System With HITS symbology Using X-Plane for a Head Up Display,” Digital Avionics Systems Conference, Vol. 2, 30 Oct.-3 Nov. 2005.
摘要: 
近年來無人飛行載具的應用日漸廣泛,因此軌跡追蹤也成為無人飛行載具的重要研究主題。本研究的目的在於設計一個追蹤無人飛行載具軌跡的方法。利用飛行模擬軟體X-Plane產生參考路徑,並記錄其飛行軌跡及資訊。而無人飛行載具的飛行動態則利用線性微分方程式,分別描述縱向(longitudinal)與橫向(lateral)的飛行動態,其動態方程式中的飛行穩定導係數(stability derivative)以及氣動力係數(aerodynamic coefficient)則由無人飛行載具與其機翼參數以及其飛行狀態推導得到。根據飛行狀態利用粒子濾波器(particle filter)估計其動態方程式的輸入控制項(control input)。分別針對起飛(takeoff)、水平飛行(level flight)和降落(landing)三部份進行模擬,並藉由模擬結果驗證提出之方法的可行性。

The objective of this thesis is to design algorithms for tracking the trajectory of UAV. A reference path is generated and recorded by flight simulator software, X-Plane, which provides the flight information to guide the UAV towards the target path. The flight motion is modeled with linear ordinary differential equations, considering both longitudinal and lateral motion. The stability derivatives and aerodynamic coefficients of dynamic equations are derived from flying situations and specifications of UAV and airfoil. Based on the flight dynamics, particle filter is applied to estimate the control inputs of dynamic equations. The proposed algorithm is verified through the simulation results for takeoff, level flight and landing, which demonstrate that the proposed scheme is feasible to make a UAV track a given flight trajectory.
URI: http://hdl.handle.net/11455/8630
其他識別: U0005-2407200913534800
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.