Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8639
DC FieldValueLanguage
dc.contributor魏榮君zh_TW
dc.contributor黃忠民zh_TW
dc.contributor張文彬zh_TW
dc.contributor.advisor裴靜偉zh_TW
dc.contributor.author林雅瑩zh_TW
dc.contributor.authorLin, Ya-Yingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:54Z-
dc.date.available2014-06-06T06:41:54Z-
dc.identifierU0005-2407200915492700zh_TW
dc.identifier.citation第一章 [1-1] Intergovernmental Panel on Climate Change(IPCC), “Second Assessment Report- Climate Change 1995”, (1995). [1-2] 莊嘉琛, “太陽能工程-太陽電池篇”, 全華科技圖書股份有限公司, (2005). [1-3] 戴寶通, 鄭晃忠, “太陽能電池技術手冊”, 台灣電子材料與元件協會, 2008年6月. [1-4] Siemens, “Photons form Flexible Plastics”, Pictures of The Future, spring (2005). [1-5] Serap Gunes, Helmut Neugebauer and Niyazi Serdar Sariciftci, “Conjugated Polymer-Based Organic Solar Cells”, Chem. Rev., Vol. 107, No. 4, pp.1324-1338 (2007). [1-6] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater.,Vol. 4, pp.864-868 (2005). [1-7] Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry and David L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaic”, Appl. Phys. Lett. 90, 163511 (2007). [1-8] Kyoung Nam Lee, Kyoung Seob Kim, Nam-Hoon Kim and Yonghan Roh, “Fabrication of SiO2 nano-dots by block copolymer lithography and liquid phase deposition”, Mater. Sci. Eng. B 147, pp.209–212 (2008). 第二章 [2-1] H. Spanggaard and F. C. Kerbs, “A brief history of the development of organic and polymeric photovoltaics”, Solar Energy Materials & Solar Cells, Vol. 83, pp.125-146 (2004). [2-2] H. Kallmann and M. Pope, “Photovoltaic effect in organic crystals”, The Journalof Chemical Physics, Vol. 30, pp.585-586 (1958). [2-3] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., Vol. 48, pp.183-185 (1986). [2-4] G. Yu, C. Zhang and A. J. Heeger, “Dual-function semiconducting polymer device light-emitting and photodetecting diodes”, Appl. Phys. Lett., Vol. 64, pp.1540-1542 (1993). [2-5] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, “Exciton diffusion and dissociation in a poly(p-phenylenevinylene) / C60 heterojunction photovoltaic cell”, Appl. Phys. Lett., Vol. 68, pp.3120-3122 (1996). [2-6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science, Vol. 258, pp.1474-1476 (1992). [2-7] G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic cells:Enhanced efficiencies via a network of a internal donor-acceptor heterojunctions”, Science, Vol. 270, pp.1789-1791 (1995). [2-8] J. S. Salafsky, “Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites”, Physical Review B, Vol. 59, No. 10, pp.885-894 (1999). [2-9] W. Beek, M. Wienk and R. Janssen, “Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer”, Adv. Mater., Vol. 16, No. 12, pp.1009-1013 (2004). [2-10] G. D. Sharma, R. Kumar, S. K. Sharma and M. S. Roy, “Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc)”, Solar Energy Materials & Solar Cells, Vol. 90, pp.933-943 (2006). [2-11] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, Vol. 295, pp.2425-2427 (2002). [2-12] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater.,Vol. 4, pp.864-868 (2005). [2-13] Serap Gunes, Helmut Neugebauer and Niyazi Serdar Sariciftci, “Conjugated Polymer-Based Organic Solar Cells”, Chem. Rev., Vol. 107, No. 4, pp.1324-1338 (2007). [2-14] 徐瑋駿, “以二氧化鈦多孔性網狀結構與奈米粉末金屬氧化物之有機太陽能電池製作研究”, 國立中正大學機械工程研究所碩士論文, 2008年1月. [2-15] Thomas Wellinger, “Efficiency Improvements of P3HT:PCBM Bulk Heterojunction Photovoltaic Cells”, Project Work, Light Technology Institute Department of Electrical Engineering and Information Technology Universität Karlsruhe (TH), July (2005). [2-16] H. Antoniadis, B. R. Hsieh, M. A. Abkowitz, S. A. Jenekhe and M. Stolka, “Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene) interfaces”, Synthetic Metals, Vol.62, pp.265-271 (1994). [2-17] C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftic, “Organic Photovoltaics”, SPRINGER (2003). [2-18] 秦興國, “二氧化鈦奈米粒子掺混於有機感光層以提升高分子/富勒烯單層異質接面太陽能電池之光電轉換效率”, 國立成功大學化學工程研究所碩士論文, 2006年6月. [2-19] K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells”, Chem. Mater. 16, 4533 (2004). [2-20] Harald Hoppe and Niyazi Serdar Sariciftci, “Organic solar cell:An review”, J. Mater. Res., Vol. 19, No. 7, Jul (2004). [2-21] G. Yu, K. Pakbaz and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Appl. Phys. Lett., Vol 64, pp.3422-3424 (1994). [2-22] 李智聖, “高效率且半透光之反向有機太陽能電池製程研究”, 國立清華大學電子工程研究所碩士論文, 2008年6月. [2-23] Harald Hoppe and Niyazi Serdar Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, J. Mater. Chem., Vol 16, pp.45–61 (2006). [2-24] P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, “Controlling Polymer-Surface Interactions with Random Copolymer Brushes”, Science, Vol. 275, pp.1458-1460 (1997). [2-25] Cheolmin Park, Jongseung Yoon and Edwin L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns”, ELSEVIER Polymer, Vol. 44, pp.6725–6760 (2003) [2-26] 何明韋, “利用PS-b-PMMA共聚高分子薄膜製備應用於矽奈米柱太陽電池之奈米結構”, 國立中興大學光電工程研究所碩士論文, 2008年7月. [2-27] Shuhong Liu, Wechung Maria Wang, Alejandro L. Briseno, Stefan C. B. Mannsfeld and Zhenan Bao, “Controlled Deposition of Crystalline Organic Semiconductors for Field-Effect-Transistor Applications”, Adv. Mater.,Vol. 21, pp.1217–1232 (2009)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8639-
dc.description.abstract本論文利用PS-b-PMMA於ITO玻璃上製作出PS奈米球狀的結構,將此結構做圖案轉移的動作,最後形成金(Au)的網狀結構,將此結構以浸泡、旋轉塗佈及Drop casting三種方式觀察P3HT是否能在特定的區域生長,希望最終能形成P3HT柱狀結構,製作出有整齊排列的Bulk heterojunction結構的高分子有機太陽能電池元件。 實驗中先製作出大小及間隔較平均的奈米球狀結構,再尋找適當的金(Au)厚度、掀離PS球時間等參數,形成將PS球完全掀離的Au pattern網狀結構,再進行以下成長P3HT柱和高分子有機太陽能電池元件兩部份實驗。 將ITO上製作的Au網狀pattern依序旋轉塗佈上PEDOT:PSS、主動層P3HT掺混PCBM之溶液、最後鍍上陰極鋁(Al)電極,製作出高分子有機太陽能電池元件。實驗中製作出四種不同結構的元件,比較有無PEDOT:PSS及Au pattern的差異。zh_TW
dc.description.abstractThis study utilizes PS-b-PMMA on ITO glasses to fabricate nanospherical structure for transfer-printing a reticular pattern of Au. And to observe the growing result of P3HT by three different methods as immersing, spin-coating, and drop casting. The objective is to determine whether an ordered bulk heterojuntion P3HT pillar can be formed as macromolecule organic solar cell. The experiment initially fabricates nanospherical structure with evenly distributed dimension and distance, and then define the appropriate factors of thickness of Au, and the PS sphere‘s lift-off time. Following the setting such factors, form an Au pattern that completely lift-off the PS spheres. After that, to carry out experiments of growing P3HT pillars and macromolecule organic solar cell. Spin coating PEDOT:PSS on Au pattern of ITO glasses, blend active layer P3HT with PCBM, followed by plating negative Al electro, and finally fabricating macromolecule organic solar cell. Four different structures items are fabricated in this test to make comparisons for the factor difference of PEDOT:PSS and Au pattern.en_US
dc.description.tableofcontents誌謝 Ⅰ 摘要 Ⅱ Abstract Ⅲ 目次 Ⅳ 表目次 Ⅵ 圖目次 Ⅶ 第一章 緒論 1 1.1 發展太陽能的必要性 1 1.2 太陽能電池 3 1.3 研究動機 5 1.3.1 有機太陽能電池優點 5 1.3.2 P3HT與PCBM混合有機高分子太陽能電池 6 1.3.3 聚合物微影技術 7 1.3.4 論文架構 7 第二章 文獻回顧 8 2.1 有機太陽能電池 8 2.1.1 有機太陽能電池的發展 8 2.1.2 有機太陽能電池原理 9 2.1.3 有機太陽能電池特性分析 11 2.1.4 有機太陽能電池結構演進 15 2.1.5 共軛高分子材料特性 17 2.2 塊狀共聚物 19 2.2.1 塊狀共聚物基本介紹 19 2.2.2 PS球狀奈米結構之形成 22 2.3在特定範圍成長有機單晶 23 第三章 實驗方法 25 3.1 實驗架構 25 3.2 實驗流程 26 3.2.1 PS球狀奈米結構之形成 26 3.2.2 P3HT柱 28 3.2.3 高分子有機太陽能電池元件製作 28 3.3 製程設備及量測儀器 30 3.3.1 手套箱 30 3.3.2 旋轉塗佈機 31 3.3.3 熱蒸鍍機 32 3.3.4 場發射掃描式電子顯微鏡(FESEM) 33 3.3.5 紫外可見光光譜儀(UV-VIS) 34 第四章 結果與討論 35 4.1 金網狀pattern製作 35 4.1.1 PS奈米球結構製作 35 4.1.2 鍍金 39 4.1.3 掀離(Lift-off)PS球 41 4.2 P3HT柱製作 47 4.2.1 浸泡 47 4.2.2 Spin coating 49 4.2.3 Drop casting 50 4.2.4 改善Au pattern及P3HT濃度降低結果 50 4.3 P3HT/PCBM掺混式太陽能電池元件製作 54 第五章 總結 57 參考文獻 58zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2407200915492700en_US
dc.subjectorganic solar cellen_US
dc.subject有機太陽能電池zh_TW
dc.subjectblock copolymeren_US
dc.subjectnanospherical structureen_US
dc.subjectpolymer lithographyen_US
dc.subjectPS-b-PMMAen_US
dc.subjectP3HT/PCBMen_US
dc.subject塊狀共聚物zh_TW
dc.subject奈米球狀結構zh_TW
dc.subject聚合物微影zh_TW
dc.title利用塊狀共聚合物微影製作奈米尺寸模板應用於高分子有機太陽能電池zh_TW
dc.titleFabrication of Nanoscale Templates using Block Copolymer Lithography for Organic Solar Cell Applicationsen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.