Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8658
DC FieldValueLanguage
dc.contributor劉漢文zh_TW
dc.contributor張文彬zh_TW
dc.contributor.advisor汪芳興zh_TW
dc.contributor.author趙仁淇zh_TW
dc.contributor.authorChao, Jen-Chien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:41:56Z-
dc.date.available2014-06-06T06:41:56Z-
dc.identifierU0005-2707200912523000zh_TW
dc.identifier.citation[1] 李玉華,"透明導電膜及其應用",科儀新知,12卷第一期, 94-102(1990) [2] J.L Vossen, Physics of Thin Films, 9 1-6 (1977) [3] 廬志銘,“磁控濺鍍氧化欣鋁(ZnO:Al)薄膜之特性與應用研究” ,國立中興大學材料科學與工程學研究所碩士論文, 民國九十六年八月 [4] L. Wang, L. Meng, V. Teixeira, S. Song, Z. Xu, X. Xu, Thin Solid Films, 517 3721–3725 (2009) [5] J. Han, P.Q. Mantas, A.M.R. Senos, Journal of the European Ceramic Society, 21 1883–1886 (2001) [6] J.M. Lin, Y.Z. Zhang, Z.Z. Ye, X.Q. Gu, X.H. Pan, Y.F. Yang, J.G. Lu, H.P. He, B.H. Zhao, Applied Surface Science,255 6460–6463 (2009) [7] H. Zhang, C. Lei, H. Liu, C. Yuan, Applied Surface Science, 255 6054–6056 (2009) [8] T. Minami , Semicond. Sci. Technol, 20 S35–S44 (2005) [9] 楊明輝,工業材料雜誌,179 期 34-44 (2000) [10] 曲喜新、楊邦朝、姜節儉、張懷武編著,“電子薄膜材料”,北京科學出版社, 93 (1996) [11] S. A. Campbell,“The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press, 2001. [12] C. Eberspacher, A.L. Fahrenbruch and R.H. Bube,Thin Solid Films, 136 1-10 (1986) [13] H.U.Habermeier, Thin Solid Films, 80157-160 (1981) [14] J.Hu and R.G.Gordon, J.Appl.Phys, 71(2) 880-890 (1992) [15] Z.C.Jin, I.Hamberg and C.G.Grangvist., J.Appl.Phys. ,64 5117-5131 ( 1988 ) [16] T.Minami, H.Satoo,T.Sonoda,H.Nanto and S. Takata, Thin Solid Films, 171 307-311 (1989) [17] F.Furusaki, J. Takahashi and K.Kodaira, J. of the Ceramic Society of Japan, 102 [2] 200-205 (1994) [18] T. Minami, H. Nanto and S. Takata, Jpn. J. Appl. Phy., 23 L280 (1984) [19] T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phy., 24 L781 (1985) [20] B. Szyszka, S. Jager, Jpn. Non-Cry. Solids., 218 74 (1997) [21] T. Minami, MRS Bulletin, 25(8) 38-44 (2000) [22] Roy G Gordon, MRS Bulletin, 25 (8) 52-57 (2000) [23] T. Minami, Semicond. Sci. Technol., 20 S35-S44 (2005) [24] J.L. Chung, J.C. Chen, C.J. Tseng, Applied Surface Science, 254 2615–2620 (2008) [25] 謝宜暾, “氧化鋅摻銅及鎳之物性研究” ,國立臺南大學自然科學教育研究學系碩士論文, 民國九十五年一月 [26] K. Ellmer, Journal of Physics D: Applied Physics, 34 3097-3108 (2001). [27] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Crystal Growth, 225 110 (2001) [28] F. S. Hickernell, IEEE Trans. Sonics Ultrason, SU-32 621 (1985) [29] S. Basu and A. Dutta, Sens. Actuators, B22 83 (1994) [30] M. Wwraback, H. Shen, S. Liang, C. R. Gorla, Y. Lu, Appl. Phys. Lett, 74 507 (1999) [31] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett, 72 3270 (1998) [32] A. Mitra, R. K. Thareja, J. Appl. Phys, 89 2025 (2001) [33] G. Neumann, Phys. Status Solids, B105 605 (1981) [34] X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, Applied Surface Science, 245 310–315 (2005) [35] Y. Igasaki and H. Saito, Thin Solid Films, 199 223 (1991) [36] J.L. Chung, J.C. Chen, C.J. Tseng, Applied Surface Science, 254 2615–2620 (2008) [37] Z. G. Yu, H. Gong, P. Wu, Journal of Crystal Growth, vol.287 199-203 (2006) [38] Y.S. Yu, G.Y. Kim, B.H. Min, S.C. Kim, Journal of the European Ceramic Society, 24 1865-1868 (2004) [39] D.H. Chi, L. T. T. Binh, N. T. Binh, L. D. Khanh, N. N. Long, Applied Surface Science, 252 2770-2775 (2006) [40] R. Hong, J. Shao, H. He, Z. Fan, Applied Surface Science, 252 2888-2893 (2006) [41] Y.F. Mei, G.G. Siu, Ricky K.Y. Fu, Paul K. Chu, Z.M. Li, Z.K. Tang, Applied Surface Science, 252 2973-2977 (2006) [42] Y.M. Lu, C.M. Chang, Shu-I Tsai, T.S. Wey, Thin Solid Films, 447-448 56-60 (2004) [43] 楊明輝, “金屬氧化物透明導電材料的基本原理”,工業材料, 179期134 (2001) [44] E. Burstein, Phys. Rev. 632-633 (1954) [45] A. P. Roth, J. B. Webb, and D. F. Williams, Phys. Rev B, 25 7836-7839 (1982) [46] B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, and C.G. Granqvist, Phys. Rev. B, 37 10244-10248 (1988) [47] C. G. Van de Walle, Phys. Rev. Lett., 85 1012 (2000) [48] C. G.. Van de Walle, J. Neugebauer, Nature 423 626 (2003) [49] J. Bang and K. J. Chang, Applied Physics Letters, 92 132109 (2008) [50] L. Y. Chen, W. H. Chen, J. J. Wang, Franklin C. N. Hong, Appl. Phys. Lett., 85 5628 (2004) [51] J.L. Chung, J.C. Chen, C.J. Tseng, Applied Surface Science, 255 2494–2499 (2008) [52] B. Y. Oh, M. C. Jeong, D. S. Kim, W. Lee and J. M. Myoung, Journal of Crystal Growth, 281 475-480 (2005). [53] P. Sagar, M. Kumar and R.M. Mehra, Thin Solid Films, 489 94-98 (2005). [54] R. Das, T. Jana, S. Ray, Solar Energy Materials & Solar Cells, 86 207–216 (2005) [55] N. Ohashi, Y.G. Wang, T. Ishigaki, Y. Wada, H. Taguchi, I. Sakaguchi, T. Ohgaki, Y. Adachi, H. Haneda, Journal of Crystal Growth, 306 316–320 (2007) [56] S. A. Campbell,“The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press, 2001. [57] 張勁燕, ”半導體製程設備” ,五南圖書出版股份有限公司,2008年 1月 ,三版三刷 p.359-405 [58] 莊達人, “VLSI製造技術” , 高立圖書有限公司, 民國95年, 六版 p.845-871 [59] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, Vacuum, 59 538-545 (2000) [60] R.W. Berry, P.M. Hall, M.T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, P.201, (1980). [61] B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, 1980. [62] 莊達人, “VLSI製造技術 ” , 高立圖書有限公司, 民國95年, 六版,P149-213 [63] 伍秀菁,汪若文,林美吟, “真空技術與應用” ,行政院國家科學委員會精密儀器發展中心, 民國90 [64] John A. Thornton, J. Vac. Sci. Technol., 11 666-670 (1974) [65] B.D. Cullity and S.R. Stock, “Elements of XRD”, Prentice Hall,Chap. 5-2 167-171 (2001) [66] K. H. Kim, K. C. Park and D. Y. Ma, Journal of Applied Physics,81 12, 1997. [67] X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, Applied Surface Science, 245 310–315 (2005) [68] S.S. Lina, J.L. Huanga, D.F. Liib, Surface & Coatings Technology, 190 372– 377 (2005) [69] D. H. Zhang, T.L.Yang, Q.P.Wang, D.J.Zhang, Materials Chemistry and Physics, 68 233-238 2001 [70] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, H. Minoura, A. K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Thin Solid Films, 496 112-116 (2006) [71] S.S. Lina, J.L. Huanga, D.F. Liib, Ceramics International, 30 497–501 (2004) [72] E.Fortunato, L.Raniero, L.Silva,A.Goncalves, A.Pimentel, P.Barquinha, H.A guas, L.Pereira, G.Goncalves, I.Ferreira, E.Elangovan, R.Martins, Solar Energy Materials & Solar Cells ,92 1605-1610 (2008) [73] S.S. Lin, J-L Huang , Solid State Phenomena, 118 571-576 (2006) [74] B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee,J.M. Myoung , Journal of Crystal Growth, 281 475–480 (2005) [75] M.J. Lee, J. Lim, J. Bang, W. Lee, J. Myoung, Applied Surface Science, 255 3195-3200 (2008) [76] H. S. Bae, J. H. Kim, and Seongil Im, Electrochemical and Solid Letters, 7 279-281 (2004) [77] L.Y. Chen. W.H. Chen, J.J. wang, and F.C.N. Hong, Applied Physics Letters,85 23 (2003) [78] G. Fang, D. Li, B.L. Yao, Vacuum, 68 363-372 (2003) [79] R.Das, T.Jana, S.Ray, Solar Energy Materials & Solar Cells, 86 207–216 (2005) [80] S. Yanfeng, W. Liu, H. Zhidan, L. Shaolin, Z.Z. Yia, G. Du, Vacuum 80 981–985 (2006) [81] W.F. Liu, G.T. Du, Y.F. Sun , J.M. Bian , Y. Cheng ,T.P. Yang , Y.C. Chang , Y.B. Xu, Applied Surface Science, 253 2999–3003 (2007) [82] X.T. Hao, L.W. Tan, K.S. Ong, F. Zhu, Journal of Crystal Growth, 287 44–47 (2006)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8658-
dc.description.abstract本論文利用射頻磁控濺鍍系統,探討濺鍍氧化鋅摻鈦(TZO)薄膜之電性與光學特性,希望可運用在光電元件。在本論文中,首先使用氬氣做背景濺鍍氣體,並改變薄膜厚度及基板溫度對薄膜進行電學特性、光學特性與結構分析。固定工作壓力5×10-3 torr,電漿功率100 W,基板溫度從室溫提升至300℃,厚度變化從30 nm至950 nm。結果顯示最適當參數為基板溫度300℃、厚度330 nm的薄膜,電性為3×10-3 Ω-cm,可見光區平均穿透率為84%。 第二部分為對TZO薄膜進行後處理,首先為氫氣環境中進行退火,退火溫度為300 ℃、400 ℃、500 ℃,退火時間一小時,另以300 ℃退火,改變時間為30到90分鐘,最後再比較不同氣體退火,分別通入氬氣、氫氣及氫氣混合氬氣比例為3:7等氣體退火。而在氫氣環境中退火溫度為400 ℃時,可得最佳電性為1.29×10-3 Ω-cm,可見光區平均穿透率為85.6%。 另一種後處理為電漿處理,改變的參數有不同的氣體分別為氬氣、氫氣及氫氣混合氬氣,氫電漿的時間變化為30到90分鐘,射頻功率的變化為10到120W,固定基板溫度為300 ℃,壓力1 Torr。而在氫氣混合氬氣的電漿處理可得最佳電性為1.13×10-3 Ω-cm,可見光區平均穿透率為83.2%。 以上經過後處理的試片都有獲得良好的電性改善,而本論文重點就是在氫氣環境中進行退火與電漿處理的兩種比較,可看出在退火時電性改善幅度比電漿處理小,但因退火使得晶格修復,使在可見光區平均穿透率有微幅提升,而在電漿處理時電性改善幅度較退火多,但因電漿離子轟擊使得薄膜表面變的較粗糙,使光線穿透薄膜時造成散射的因素,使可見光區平均穿透率確有些許的下降。zh_TW
dc.description.abstractThis study employed the RF (13.56 MHz) Magnetron Sputtering System to investigate electrical and optical properties of TZO thin-films, for optoelectrical applications. By using argon as the sputtering gas medium, the electrical, optical, and structural properties of TZO thin-films were analyzed by varying the thickness of the film and the substrate temperature. The substrate temperature was raised from room temperature to 300 °C and the film thickness was varied from 30 nm to 950 nm at a working pressure of 5×10-3 Torr and RF power of 100 W. The optimal parameters were at substrate temperature of 300 °C, and 330 nm film thickness, which resulted in an average light transmittance of 84% and a resistivity of 3×10-3 Ω-cm. Following the sputtering step, two post-treatments were performed. The first post-treatment annealed the thin-film in hydrogen atmosphere with the annealing temperatures of to 300 °C, 400 °C, and 500 °C for one hour. Next, the annealing time was varied from 30 to 90 min at 300 °C using different annealing gases such as Ar, H2, and Ar+ H2 (3:7). For the case of annealing at 400 °C and under hydrogen atmosphere resulted in an optimal resistivity of 1.29×10-3 Ω-cm and an average light transmittance of 85.6%. The second post-treatment used plasma treatment with different gases such as Ar, H2, and Ar+ H2. Hydrogen plasma was applied from 30 to 90 min with 10-120W (RF power), substrate temperature of 300 °C, and working pressure of one Torr. The optimal resistivity of 1.13×10-3 Ω-cm was obtained by using Ar+ H2 plasma treatment with a 83.2% average light transmittance. In this work, we compared the effect of post-annealing and plasma treatment on the optical and electrical properties of sputtered TZO thin-film as possible photoelectric devices. By employing the post-annealing step, light transmittance was enhanced, due to alteration of crystal structure, but the resistivity was less improved than that of plasma treatment. In contrast, the plasma treatment offered higher reduction in resistivity. However, due to bombardment of plasma gas ion on the film, the surface became rough, which scatter the light causing a slight reduction in light transmittance.en_US
dc.description.tableofcontents目次 誌謝 i 中文摘要 ii 英文摘要 iii 目次 iv 圖目次 vi 表目次 viii 第一章 緒論 1 1-1 透明導電膜 1 1-1.1 薄金屬膜 1 1-1.2 ..透明氧化物薄膜 2 1-2 透明導電膜的應用 2 1-3 研究動機與目的 5 第二章 基礎理論與文獻回顧 7 2-1 氧化鋅晶體結構及特性 7 2-1.1 導電性質 7 2-1.2 光學特性 9 2-1.3 氫摻雜效應 12 2-2 濺射原理機制 14 2-2.1 電漿原理 14 2-2.2 射頻磁控濺鍍系統 17 2-2.3 薄膜沉積成長機制 18 2-2.4 濺鍍薄膜表面及截面型態結構 19 第三章 實驗步驟與方法 21 3-1 實驗製程與分析流程 21 3-2 製作靶材流程 22 3-2.1 粉末配製 23 3-2.2 靶材製程 23 3-3 玻璃切割與清洗 23 3-4 實驗系統與實驗參數 25 3-4.1 濺鍍系統與實驗參數 25 3-4.2 電漿處理系統與實驗參數 27 3-4.3 熱處理系統與實驗參數 28 3-5 薄膜特性分析 29 3-5.1 薄膜特性分析 29 3-5.2 薄膜電性分析 30 3-5.3 薄膜光學分析 31 3-5.4 薄膜成份分析 31 第四章 結果與討論 32 4-1 薄膜厚度的影響 32 4-2 基板溫度的影想 43 4-3 氫退火效應 51 4-4 氫電漿處理 62 第五章 結論 72 5-1 總結 72 參考文獻 73zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200912523000en_US
dc.subject氧化鋅掺鈦zh_TW
dc.subjectTransparent conductive oxide,Ti doped zinc oxideen_US
dc.subject射頻磁控濺鍍系統zh_TW
dc.subjectR.f. magnetron sputtering systemen_US
dc.title氧化鋅摻鈦薄膜特性之研究zh_TW
dc.titleStudy on Characteristics of ZnO:Ti thin filmsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.