Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorCheng, Yi-Syuanen_US
dc.identifier.citation[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec. 1993. [2] A. Said and W. A. Pearlman, “ A new, fast, and efficient image code based on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243-250, June 1996. [3] A. A. Alatan, M. Zhao, and A. N. Akansu, “Unequal error protection of SPIHT encoded image bit streams,”IEEE Journal on Selected Areas in Communications,vol.18 no. 6, pp. 814-818, June 2000. [4] R. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,” BSTJ, vol. 46, pp. 1775-1796, December 1966. [5] G. J. Foschini and M.J. Gans, “On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas,” Wireless Personal Communications, vol. 6, pp. 311-335, Mar. 1998. [6] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov. 1999. [7] S. M. Alamouti, “A Simple Transmitter Diversity Scheme for Wireless Communi- cations,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998. [8] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes.1,” IEEE International Conference on Commun., vol. 2, pp. 1064-1070, Mar. 1993. [9] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inform. Theory, vol. 8, pp. 21-28, Jan. 1962. [10] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. 27, pp. 533-547, Sept. 1981. [11] T. H. Liew and L. Hanzo, “Space-time codes and concatenated channel codes for wireless communications,” Proc. IEEE, vol. 90, pp. 187-219, Feb. 2002. [12] H. FUTAKI and T. OHTSUKI, “space-time transmit diversity schemes with low-density parity-check (LDPC) codes,” IEICE Trans. Commun., vol. E86-B, no. 10, Oct. 2003. [13] G. Zhu, Y. He, G. Liu, B. Zhang, and F. Wang, “Concatenation of space-time block codes and turbo product codes over Rayleigh flat fading channels,” IEEE Vehicular Technology Conference, vol. 2, pp. 1186-1190, May. 2005. [14] Yinggang Du, and K. T. Chan, “Enhanced space-time block coded systems by concatenating turbo product codes,” IEEE Commun. Letters, vol. 8, pp. 388-390, June 2004. [15] S. Lin and D. J. Costello, Jr., Error Control Coding, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. [16] T. Richardson, A. Shokrollahi and R. Urbanke, “Design of capacity approaching irregular codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001. [17] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 638-656, Feb. 2001. [18] IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE, New York, USA. [19] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” IEEE Tran. TCSI, vol. 52, pp. 766-775, Apr. 2005. [20] Kaveh Pahlavan & Allen H. Levesque, “Wireless Information Networks(second edition)”, A JOHN WILEY & SONS., INC., PUBLICATION, 2005 [21] Matthias Pätzold, “Mobile Fading Channel” John Wiley & Sons, Ltd, 2002 [22] K.F. Lee and D.B. Williams, “A space-frequency transmitter diversity technique For OFDM systems,” IEEE GLOBECOM., vol. 3, 27 Nov. - 1, pp.1473-1477 Dec. 2000. [23] Blum, R.S.,Ye Geoffrey Li, Winters, J.H.and Qing Yan“ Improved Space-Time Coding for MIMO-OFDM Wireless Communications”IEEE Trans. Inform. Theory, vol. 49, pp. 1873-1878, Feb. 2001. [24] A. van Zelst and T.C.W. Schenk, “Implementation of a MIMO OFDM-based wireless LAN system,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp.483-494. Feb. 2004 [25] K. Suto and T. Ohtsuki, “Performance evaluation of space-time- frequency block codes over frequency selective fading channels,” Vehicular Technology Conference,vol. 3, 24-28 Sept. 2002, pp. 1466-1470. [26] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2,” IEEE International Conference on Commun., vol. 2, pp. 664- 668, Apr.-May 2002.zh_TW
dc.description.abstractSPIHT的高壓縮率且具有漸進式傳輸的影像編碼架構,其編碼效率高、速度快且複雜度低,但是當位元訊息產生錯誤時,回覆的影像往往不得辨識,因此針對不等同重要性資料,使用不等同錯誤保護(Unequal Error Protection,UEP)的渦輪碼與低密度查核碼,將通道編碼的效率提升以節省多餘的查核位元,同時低頻係數的重要資料能有更好的錯誤保護。本篇論文模擬在802.11與COST207兩種標準下之多路徑衰減通道,針對此頻率選擇性衰減通道的效應,引用OFDM的技術將調變信號分成多個正交子載波在一個時間週期平行傳送。再引用多根天線傳輸相同的信號,經過數個獨立的通道由多根天線接收,以降低信號同時錯誤的機會,並且提升分集的增益(diversity gain)。並針對整體系統在不同多路徑環境觀察接收端還原影像之影像信號雜訊比(Peak signal-to-noise ratio)之優劣。zh_TW
dc.description.abstractSPIHT has a high compression rate that could provide a progressive transmission over image-coded structure, it is also a high code-rate, fast encoded and low complexity code. But when the bit stream error occurs, the recovered image is unrecognized. Therefore, we have to use different Unequal Error Protected (UEP) Turbo code and LDPC code to raise the channel coding rate according to their different importance level in order to reduce to unnecessary parity check bits and meanwhile the important low frequency data factors can have a better protection. In this thesis, we simulate the transmission over IEEE 802.11 and COST207 two different standard multi-path fading channels. According to these fading channels, we will use OFDM technique to transform signals into multiple orthogonal subcarriers to be transmitted over multiple antenna transmission structure in the same time period. By applied Multiple Input Multiple Output (MIMO) technique in to the multi- antenna system, we could reduce the error probability of transmitting error in the same time, also raise the diversity gain of total transmission and observe the system peak signal-to-noise ratio performance of the recovering image at the receiver.en_US
dc.description.tableofcontents目錄 中文摘要 ii Abstract iii 第一章 前言 1 第二章 階層數區段分割壓縮碼(SPIHT Code) 4 2.1 二維小波轉換(2D Wavelet Transform) 4 2.2 階層數區段分割壓縮碼(SPIHT Code) 7 2.2.1 零樹(Zerotree) 7 2.2.2 SPIHT的基本觀念及符號說明 7 2.2.3 SPIHT影像壓縮編碼程序 9 2.2.4 SPIHT影像壓縮編碼範例 11 2.2.5 SPIHT影像壓縮解碼範例 17 2.2.6 影像品質的定義 25 2.2.7 SPIHT Code效能分析 26 第三章 渦輪碼(Turbo Code)與低密度查核碼(LDPC Code) 28 3.1 渦輪碼編碼理論 28 3.2 渦輪碼解碼理論 30 3.2.1 BCJR演算法推導 30 3.2.2 渦輪碼解碼流程 36 3.3 低密度查核碼編碼理論 39 3.4 低密度查核碼解碼理論 41 3.4.1 雙邊圖介紹 42 3.4.2 和積演算法之機率域 43 3.4.3 和積演算法之對數域 46 3.5 IEEE 802.16e之低密度查核碼 49 3.6 渦輪碼在可加性高斯白雜訊通道之效能分析 51 3.7 低密度查核碼在可加性高斯白雜訊通道之效能分析 54 第四章 多輸入多輸出正交分頻多工系統(MIMO-OFDM Systems) 57 4.1 無線通道模型 57 4.2 多路徑衰減通道 57 4.2.1 802.11模型 58 4.2.2 COST207模型 60 4.3 多輸入多輸出正交分頻多工系統(MIMO-OFDM System) 63 4.3.1 正交分頻多工系統 63 4.3.2 多輸入多輸出系統 69 傳統Maximal Ratio Receive Combining (MRRC)系統69 Alamouti’s時空區塊碼系統 70 4.3.3 MIMO-OFDM系統架構 72 4.3.4 高速率調變下之解調變 73 4.4 時空區塊碼在802.11與COST207通道模型之效能分析 76 4.5 MIMO-OFDM系統在802.11通道模型之效能分析 79 第五章 SPIHT不等同錯誤保護在MIMO-OFDM系統 82 5.1 不等同錯誤保護(UEP)觀念 82 5.2 渦輪碼與低密度查核碼連結MIMO-OFDM系統效能分析 84 5.3 SPIHT由不等同錯誤保護渦輪碼與低密度查核碼連結MIMO-OFDM之 系統效能分析 90 第六章 結論 106 參考文獻 107zh_TW
dc.titlePerformance Analysis of MIMO-OFDM Systems Concatenated with JSCC over Multi-Path Fading Channelen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.