Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8754
DC FieldValueLanguage
dc.contributor康宗貴zh_TW
dc.contributor江雨龍zh_TW
dc.contributor.advisor劉漢文zh_TW
dc.contributor.advisorHan-Wen Liuen_US
dc.contributor.author甘政祐zh_TW
dc.contributor.authorGan, Jheng-Youen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:42:05Z-
dc.date.available2014-06-06T06:42:05Z-
dc.identifierU0005-0208201013110700zh_TW
dc.identifier.citation[1]Ihsanul Afdi Yunaz, Kenji Hashizume, Shinsuke Miyajima, Akira Yamada, Makoto Konagai, “Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications”, Solar Energy Materials & Solar Cells 93 (2009) 1056–1061. [2]H. F. Sterling and R. C. G. Swann, “Chemical vapor deposition promoted by r.f. discharge”, Solid-state Electron, vol. 8, pp. 653-654, 1965. [3]W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon.” Solid State Communications, 17, 1193-1196, 1975. [4]W. E. Spear and P. G. Le Comber, Phil. Mag. 33, 935-949, 1976. [5]A. Triska, D. Dennison and H. Fritzsche, Bull. Am. Phys. Soc. 20, p. 392 , 1975. [6]U. Kr oll, C. Bucher, S. Benagli, I. Schonbachler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Buchel, M. Poppeller, “High-efficiency p-i-n a-Si:H solar cells with low boron cross-contamination prepared in a large-area single-chamber PECVD reactor”, Thin Solid Films 451 –452 (2004) 525–530. [7]莊嘉琛, “太陽能工程-太陽能電池篇”, 全華圖書股份有限公司出版, 中華民國九十六年六月(六版). [8]L. L. Kazmerski, “Polycrystalline and Amorphous Silicon Thin Film and Devices”, Academic Press, 1980. [9]D. L. Staebler and C. R. Wronski, “Optically Induced Conductivity Changes in Discharge-Produced Hydrogenated Amorphous Silicon,” J. Appl. Phys. 51, pp.3262-3268, 1980. [10]M. Stutzmann, W. B. Jackson, and C. C. Tsai, “Kinetics of the Staebler-Wronski effect in hydrogenated amorphous silicon,” Appl. Phys. Lett.45(10), vol.15, pp.1075-1077, 1984. [11]B. Pivac, I. Kovacevic, I. Zulim, V. Gradisnik, “Effect of Light Soaking on Amorphous Silicon”, IEEE, Photovoltaic Specialists Conference, pp.884-887, 2000. [12]H. R. Shanks, C. J. Fang, M. Cardona, F. J. Demond, S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon”, Phys. Status Solidi B 100 (1980) 43. [13]陳治明, “非晶半導體材料與器件”, 科學出版社, 北京, 61 (1991). [14]J. Tauc, R. Grigorovici, A. Vancu, “Original Paper Optical Properties and Electronic Structure of Amorphous Germanium”, Phys. Status Solidi B Volume 15 Issue 2, Pages 627 – 637 (1966). [15]Tat M. Mok and Stephen K. O’Leary, “The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: αl Experimental limitations and the impact of curvature in the Tauc and Cody plots” , JOURNAL OF APPLIED PHYSICS 102, 113525 (2007). [16]吳怡德, “以連續式離子層吸附與反應法製備CuInS2於超薄吸收層太陽能電池之應用”, 國立成功大學化學工程研究所碩士論文, 中華民國九十六年六月 [17]Konstantin Pokhodnya, Joseph Sandstrom, Chris Olson, Xuliang Dai, Philip R. Boudjouk, Douglas L. Schulz. "Comparative study of low-temperature PECVD of amorphous silicon using mono-, di-, trisilane and cyclohexasilane", Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE. [18]Stefan Klein, Friedhelm Finger, and Reinhard Carius, “Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance”, JOURNAL OF APPLIED PHYSICS 98, 024905, 2005. [19]Marieke K. van Veen, Ruud E. I. Schropp, “Amorphous silicon deposited by hot-wire CVD for application in dual junction solar cells” , Thin Solid Films 403 –404 (2002) 135–138. [20]鄭晃忠, 紀國鐘, “液晶顯示器技術手冊”, 經濟部技術處 發行, 台灣墊子材料與元件協會 出版, 中華民國九十三年十一月(四版). [21]S. M. Iftiquar, A. K. Barua, “Control of the properties of wide bandgap a-SiC : H films prepared by RF PECVD method by varying methane flow rate”, Solar Energy Materials and Solar Cells 56 (1999) 117-123. [22]Chia-Fu CHEN and Yan-Way LI, “The Effects of Hydrogen Plasma Treatment on the Plasma-Enhanced Chemical Vapor Deposition a-SiC:H Films”, Japanese Journal of Applied Physics Vol. 43, No. 8A, 2004, pp. 5545–5549. [23]Y Bouizem, A Belfedal1, J D Sib, AKebab andLChahed, “Optoelectronic properties of hydrogenated amorphous germanium deposited by rf-PECVD as a function of applied rf-power”, J. Phys.: Condens. Matter 17 (2005) 5149–5158. [24]U. Coscia, G. Ambrosonea, S. Lettieria, P. Maddalenaa, P. Ravab, C. Minarinic, “Power density effects on the growth of microcrystalline silicon–carbon alloys by PECVD”, Thin Solid Films 427 (2003) 284–288. [25]Chandan Das and Swati Ray, “Power density in RF PECVD: a factor for deposition of amorphous silicon thin films and successive solid phase crystallization”, J. Phys. D: Appl. Phys. 35 (2002) 2211–2216. [26]Yongsheng Chen, Jianhua Wang, Jingxiao Lu, Wen Zheng, Jinhua Gub,Shi-e Yang, Xiaoyong Gao, “Microcrystalline silicon grown by VHF PECVD and the fabrication of solar cells”, Solar Energy 82 (2008) 1083–1087. [27]A. Achiq, R. Rizk, F. Gourbilleau, P. Voivenel, “Effects of hydrogen partial pressure on the structure and properties of sputtered silicon layers”, Thin Solid Films 348 (1999) 74-78. [28]J. Kocka, T. Mates, H. Stuchlikova, J. Stuchlik and A. Fejfar, “Characterization of grain growth, nature and role of grain boundaries in microcrystalline silicon—review of typical features”, Thin Solid Films 501 (2006) 107 – 112. [29]Seung Yeop Myong, Kobsak Sriprapha, Yasutoshi Yashiki, Shinsuke Miyajima, Akira Yamada, Makoto Konagai, “Silicon-based thin-film solar cells fabricated near the phase boundary by VHF PECVD technique”, Solar Energy Materials & Solar Cells 92 (2008) 639–645. [30]Dong-Won Kang, Seung-Hee Kuk, Kwang-Sun Ji, Seh-Won Ahn, and Min-Koo Han, “Highly Transparent and High Haze Bilayer Al-Doped ZnO Thin Film Employing Oxygen-Controlled Seed Layer” , Jpn. J. Appl. Phys. 49 (2010) 031101.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8754-
dc.description.abstract在本論文中,是利用極高頻電漿輔助化學氣相沈積系統(very-high-frequency plasma-enhanced chemical vapor deposition VHF-PECVD)製備本質、P型及N型氫化非晶矽薄膜。使用VHF-PECVD可以在電漿內產生較高的離子密度及降低離子能量,使沉積速率提升及降低離子轟擊破壞等特性,藉由比射頻電漿輔助化學氣相沉積系統(radio-frequency plasma-enhanced chemical vapor deposition RF-PECVD)更高的氫原子解離率,可獲得良好品質的薄膜。由於VHF-PECVD製備薄膜具有上述之優點,我們在製程中改變製程溫度、製程功率、甲烷氣體流量及氫稀釋比,分析薄膜結構、品質與光學性質和電性之特性比較。在製作出PIN薄膜太陽能電池,獲得相關的電性參數如光電轉換效率、開路電壓、短路電流密度、填充因子等。 從不同的製程溫度之傅立葉轉換紅外線光譜儀量測結果顯示,隨著製程溫度的上升則本質氫化非晶矽薄膜的氫含量會下降,因為氫在製程溫度升高狀況下會揮發,氫原子無法保留在本質氫化非晶矽薄膜內,使得缺陷過多造成太陽能電池電特性下降。從不同的甲烷氣體流量之穿透率圖得知,在P型氫化非晶矽薄膜內,摻雜碳原子有助於穿透率的提升,但是摻雜碳原子同時也會使導電性下降,所以要找到最佳的條件。從不同的製程功率之傅立葉轉換紅外線光譜儀量測結果顯示,隨著製程功率的上升則本質氫化非晶矽薄膜的氫含量會下降,因為在製程功率增加時,會打斷較弱的Si-H鍵結與H-H鍵結,破壞本質氫化非晶矽薄膜造成缺陷過多影響電性下降。從不同的氫稀釋比之拉曼與傅立葉轉換紅外線光譜儀量測結果顯示,隨著氫稀釋比的上升,本質氫化非晶矽薄膜的結晶率也會上升,逐漸形成微晶矽薄膜,但同時也造成是氫含量下降與微結構參數的上升。 在本研究論文中,製程溫度300 ℃、甲烷氣體流量10 sccm、製程功率30 W、氫稀釋比R=20的條件下,獲得最佳的PIN薄膜太陽能電池的效率約為4.88 %,其短路電流密度約為9.81 mA/cm2、開路電壓約為0.79 V、填充因子約為0.63、串聯電阻5 Ω/cm2、分流電阻1810 Ω/cm2。zh_TW
dc.description.abstractIn this thesis, intrinsic hydrogenated amorphous silicon thin films (i-a-Si:H), P-type and N-type hydrogenated amorphous silicon thin films (p-a-Si:H and n-a-Si:H) are deposited by very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD). VHF-PECVD can produce the high density and low ion energy plasma to enhance the deposition rate and lower ion bombardment and destruction. As compared with the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD), the VHF-PECVD technique can also achieve the good quality of thin films due to the high generation rate of atomic hydrogen. As the film prepared by VHF-PECVD with the advantages mentioned above, we change the process parameters, including the substrate temperature, power, methane gas flow rate and hydrogen dilution ratio. The structure quality, optical properties and electrical characteristics of these films are compared. PIN thin film solar cells fabricated by above process parameters are used to study the relative photoelectric conversion efficiency, open-circuit voltage, short-circuit current density and filled factor. Intrinsic hydrogenated amorphous silicon thin films deposited by different substrate temperature by the Fourier transform infrared spectroscopy (FTIR) measurement show that with the substrate temperature increasing, the hydrogen content will decrease because the hydrogen in the high temperature conditions will evolute and can not remain in the intrinsic hydrogenated amorphous silicon thin film. Therefore, the electrical properties of solar cell will be poor. P-type hydrogenated amorphous silicon thin film deposited by different methane gas flow rate and analyzed by the transmittance shows that the introduced carbon atoms will enhance the transmittance, but the conductivity of the p-a-Si:H thin film will decrease. Intrinsic hydrogenated amorphous silicon thin films deposited by different power and analyzed by the FTIR measurement show that with the deposition power increasing, the hydrogen content will decrease because the high power would break the weak Si-H and H-H bonds and detoriate the i-a-Si:H thin films, resulted in poor electric characteristics of solar cells. Intrinsic hydrogen amorphous silicon thin films deposited different hydrogenated dilution ratio and analyzed by the Raman and FTIR measurement show that with the increase of hydrogen dilution ratio, the ratio of crystallization in the i-a-Si:H thin films will also increase gradually, but the hydrogen content will decrease and the microstructure parameter will increase. In this study, the substrate temperature at 300 ℃, methane gas flow rate in 10 sccm, deposition power of 30 W and hydrogen dilution ratio of R = 20 are the optimum conditions for any single thin film, and are adopted to fabricate the PIN solar cells: photoelectric conversion efficiency of 4.88%, short-circuit current density of 9.81 mA/cm2, open-circuit voltage of 0.79 V, filled factor of 0.63, series resistance of 5 Ω/cm2,and shunt resistance of 1810 Ω/cm2.en_US
dc.description.tableofcontents誌謝 i 中文摘要 ii Abstract iii 目次 v 表目次 vii 圖目次 viii 第一章 簡介 1 1.1 前言 1 1.2 動機與目的 2 1.3 文獻探討 3 1.4 論文架構 3 第二章 太陽能電池 5 2.1 太陽能電池基本原理 5 2.2 太陽能光譜 9 2.3 氫化非晶矽薄膜特性 10 2.4 太陽能電池的電路模型 11 第三章 實驗方法及流程 15 3.1 本質氫化非晶矽薄膜材料製作流程 15 3.1.1 試片清洗 15 3.1.2 本質氫化非晶矽薄膜分析 16 3.2 PIN薄膜太陽能電池製作流程 18 3.2.1 試片清洗 18 3.2.2 PIN薄膜太陽能電池分析 18 3.3 極高頻電漿輔助化學氣相沈積系統 23 3.4 熱蒸鍍機 24 3.5 傅立葉轉換紅外光譜 24 3.6 紫外光可見光光譜 26 3.7 拉曼光譜儀 27 3.8 掃描式電子顯微鏡 27 3.9 原子力顯微鏡 28 3.10 四點探針 28 3.11 入射光電轉換效率 28 3.12 光電特性量測儀器 29 第四章 結果與討論 30 4.1 製程溫度對本質氫化非晶矽薄膜與PIN薄膜太陽能電池的影響 30 4.1.1 本質氫化非晶矽薄膜的特性分析 30 4.1.2 PIN薄膜太陽能電池特性量測 42 4.2 甲烷流量對P型氫化非晶矽薄膜與PIN薄膜太陽能電池的影響 47 4.2.1 本質氫化非晶矽薄膜的特性分析 47 4.2.2 PIN薄膜太陽能電池特性量測 53 4.3 製程功率對本質氫化非晶矽薄膜與PIN薄膜太陽能電池的影響 58 4.3.1 本質氫化非晶矽薄膜的特性分析 58 4.3.2 PIN薄膜太陽能電池特性量測 74 4.4 氫稀釋比對本質氫化非晶矽薄膜與PIN薄膜太陽能電池的影響 79 4.4.1 本質氫化非晶矽薄膜的特性分析 79 4.4.2 PIN薄膜太陽能電池特性量測 94 4.5 比較不同透明導電膜玻璃基板上製備PIN薄膜太陽能電池 99 第五章 結論 103 參考文獻 105zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201013110700en_US
dc.subjectThin-Film Solar Cellen_US
dc.subject薄膜太陽能電池zh_TW
dc.title使用極高頻電漿輔助化學氣相沈積系統製作氫化非晶矽薄膜應用於薄膜太陽能電池zh_TW
dc.titleStudy on the Fabrication of Hydrogenated Amorphous Silicon Films using VHF-PECVD for Thin-Film Solar Cellen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.