Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8811
DC FieldValueLanguage
dc.contributor方俊雄zh_TW
dc.contributorChun-Hsiung Fangen_US
dc.contributor陶金旭zh_TW
dc.contributorJin-Shiuh Tauren_US
dc.contributor.advisor蔡清池zh_TW
dc.contributor.advisorChing-Chih Tsaien_US
dc.contributor.author李盈儒zh_TW
dc.contributor.authorLi, Ying-Ruen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:42:09Z-
dc.date.available2014-06-06T06:42:09Z-
dc.identifierU0005-1208201015234500zh_TW
dc.identifier.citation[1] J. F. Blumrich, Omnidirectional vehicle, United States Patent 3,789,947, 1974. [2] B. E. Ilou, Wheels for a course stable self-propelling vehicle movable in any desired direction on the ground or some other base, United States Patent 3,876,255, 1975. [3] M. West, H. Asada, “Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematics,” Journal of Mechanical Design, pp. 119-161, 1997. [4] M. Wada, S. Mory “Holonomic and omnidirectional vehicle with conventional tires,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3671-3676, 1996. [5] B .Carlisle, “An omnidirectional mobile robot,” Development in Robotics, Kempston, pp.79-87, 1983. [6] F. G. Pin, S. M. Killough, “A new family of omnidirectional and holonomic wheeled platforms for mobile robot,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, pp. 978-989, 1999. [7] P. Muir, C.Neuman, “Kinematic modeling of wheeled mobile robots,” Journal of Robotic Systems, Vol. 4, No. 2, pp. 281-340, 1987. [8] F. G. Pin, and S. M. Killough, “A new family of omnidirectional and holonomic wheeled platforms for mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 480-489, 1994. [9] K.S. Byun, S. J. Kim, J. B. Song, “Design of a four-wheeled omnidirectional mobile robot with variable wheel arrangement mechanism, ” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 720-725, May 2002 [10] L. Wilson, C.Williams, J.Yance, J.Lew, R.L. Williams II, “Design and modeling of a redundant omnidirectional RoboCup goalie,” [online available] http://zen.ece.ohiou.edu/~robocup /papers/mech/65.pdf. [11] L. Huang, Y. S. Lim, D.C. E. L. Teoh, “Design and analysis of a four- wheel omnidirectional mobile robot, ” Proc. of the 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, pp. 425-428. December 13-15, 2004. [12] O. Purwin and R. D'Andrea, “Trajectory Generation for Four Wheeled Omnidirectional Vehicles,” Proceedings of 2005 American Control Conference, Portland, OR, USA, pp. 4979-4984, June 8-10, 2005. [13] C.-C. Shing; P.L. Hsu; S.S. Yeh, “T-S fuzzy path controller design for the omnidirectional mobile robot,” IECON 2006, 32nd Annual Conference on IEEE Industrial Electronics, Taipei, Taiwan, pp. 4142-4147, 6-10 Nov. 2006. [14] T.-H. S. Li, C.-Y. Chen, H.-L. Hung, and Y.-C.Yeh, “A fully fuzzy trajectory tracking control design for surveillance and security Robots,” E-proceeding of 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, October, 2008. [15] D.W.C. Ho, P.A. Zhang and J. Xu, “Fuzzy wavelet networks for function learning,” IEEE Trans. on Fuzzy Systems, vol. 9, no.1, pp.200-211, Feb. 2001. [16] C. K. Lin, “Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks,” IEEE Trans. on Fuzzy Systems, vol. 14, no.6, pp.849-859, Dec. 2006. [17] Y. C. Feng, Motion Control, Navigation and Mission Execution of a Tour-Guided Robot with Four-Wheeled Omnidirectional Platform, M.S. Thesis, Department of EE, N.C.H.U, Taichung, Taiwan, July 2008. [18] C. C. Tsai, and H. L. Wu, “Nonsingular Terminal Sliding Control Using Fuzzy Wavelet Networks for Mecanum Wheeled Omni-directional Vehicles,” accepted for presentation at the 2010 IEEE International Conference on Fuzzy Systems, Barcelona, Spain, July 2010. [19] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy analysis for wavelet approximations,” IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 2, MARCH 1995zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8811-
dc.description.abstract本篇論文針對含未知參數或參數變動之麥卡倫全方位行動機器人,發展該機器人之數學模型,進行分別設計運動學控制器,動力學控制器、智慧適應性控制器及SoPC 實現。該三種控制器皆利用倒逆步合成並透過Lyapunov 穩定定理,證明其全域漸近式的穩定。在智慧適應性控制器之設計程序中,智慧型小波網路被用來線上近似控制器中一些不確定的非線性項,可使該智慧適應性控制器在未知參數或參數變動之情況下,達成良好的運動效能。模擬結果顯示論文提出的控制方法具有可行性及有效性。zh_TW
dc.description.abstractThis thesis develops techniques and methodologies for modeling, intelligent adaptive motion control and SoPC implementation of a Mecanum wheeled omnidirectional mobile robot (MWOR) with unknown parameters and abrupt parameter variations. Three controllers, including kinematics, dynamic and intelligent adaptive controllers, are synthesized by backstepping and are proven globally asymptotically stable via the Lyapunov stability theory. In designing the intelligent adaptive controller, fuzzy wavelet networks are used to on-line approximate a uncertain nonlinear term of the controller, thereby achieving satisfactory motion control performance. Simulations results and experimental results are conducted which have shown the feasibility and effectiveness of the proposed control methods.en_US
dc.description.tableofcontents致謝詞....................................... i 中文摘要..................................... ii Abstract ...................................... iii Contents....................................... iv List of Tables ................................... xii Nomenclature ................................... xiii List of Acronyms................................... xiv Chapter 1 Introduction .................................. 1 1.1 Introduction .................................... 1 1.2 Literature Survey .................................. 2 1.2.1 Related Work for Motion Control........................ 2 1.2.2 Related Work for Fuzzy Wavelet Networks .................. 3 1.3 Motivation and Objectives ............................. 3 1.4 Main contributions.................................. 4 1.5 Thesis Organization ................................ 4 Chapter 2 System Structure and Control Architecture................ 5 2.1 Introduction .................................... 5 2.2 Mechtronic Structure of MWOR.......................... 7 v 2.2.1 Brushless Motors ............................... 8 2.2.2 Motor Drive ................................... 9 2.2.3 Mecanum Wheel................................ 10 2.2.4 Rotary Encoder.................................11 2.2.5 Battery Energy Display ........................... 14 2.2.6 Suspension: Refocus 382........................... 14 2.2.7 Power Interface................................ 15 2.3 FPGA-Based SoPC Implementation ........................ 16 2.3.1 SoPC Architecture ............................... 16 2.3.2 System Architecture............................. 22 2.3.3 Wire Connectors ................................ 24 2.3.4 QEP Circuitry ................................ 26 2.3.5 Digital-to-Analog Converter: MCP4822 ................... 27 2.3.6 Signal Flow of the Overall System...................... 28 2.4 Manual Test .................................... 29 2.5 Concluding Remarks ................................ 32 Chapter 3 Kinematic and Dynamic Modeling .................... 33 3.1 Introduction .................................... 33 3.2 Kinematics Model ................................ 34 3.3 Dead reckoning................................... 36 3.4 Dynamic Model .................................. 37 3.5 Concluding Remarks ................................ 39 vi Chapter 4 Design of Kinematic and Dynamic Controllers ............ 40 4.1 Introduction .................................... 40 4.2 Kinematic Controller Design............................ 41 4.2.1 Point stabilization .............................. 41 4.2.2 Trajectory Tracking ............................. 44 4.3 Dynamic Controller Design............................ 47 4.3.1 Simulations of the Proposed Kinematic Controller (4.7) ........... 47 4.3.2 Simulations of the Proposed Kinematic Controller (4.10) ......... 52 4.5 Experimental Result and Discussion .....................56 4.6 Concluding Remarks .............................59 Chapter 5 Intelligent Adaptive Motion Control Using Fuzzy Wavelet Networks 60 5.1 Introduction .................................... 60 5.2 Dynamic Backstepping Controller Design.............61 5.3 Brief Review of FWN............................... 63 5.4 Fuzzy-Wavelet-Network Approximator ..................... 64 5.5 Intelligent Adaptive Motion Controller Design.................. 66 5.6 Simulations and Discussion: the Dynamic Backstepping Controller..........68 5.6.1 Stabilization ................................. 69 5.6.2 Straight-Line Trajectory Tracking ....................... 70 5.6.3 Circular Trajectory Tracking ......................... 71 5.7 Simulations and Discussion: the Intelligent Adaptive Motion Controller......72 5.7.1 Stabilization ................................73 5.7.2 Straight-Line Trajectory Tracking ............73 5.7.3 Circular Trajectory Tracking .........75 5.7.4 Robustness Against the Mass Variation................... 76 5.8 Concluding Remarks ................................ 77 Chapter 6 Conclusions and Future Work ...................... 78 6.1 Conclusions .................................... 78 6.2 Future Work .................................... 79 References 80zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201015234500en_US
dc.subjectMecanumen_US
dc.subject麥卡倫zh_TW
dc.subjectOmnidirectionalen_US
dc.subjectroboten_US
dc.subjectintelligenten_US
dc.subjectFWNen_US
dc.subject全方位zh_TW
dc.subject機器人zh_TW
dc.subject智慧型zh_TW
dc.subject模糊小波網路zh_TW
dc.title麥卡倫全方位輪式機器人之智慧型適應行動控制zh_TW
dc.titleIntelligent Adaptive Motion Control for Mecanum Wheeled Omnidirectional Robotsen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.