Please use this identifier to cite or link to this item:
標題: 太陽能系統之穩壓電路設計
Regulation Circuit Design for Solar-Cell Systems
作者: 劉怡眉
Liu, Yi-Mei
關鍵字: 太陽能電池;Solar-cell;脈波頻率調變;PFM
出版社: 電機工程學系所
引用: [1] D. Abbott, “Keeping the energy debate clean: how do we supply the world’s energy needs?, ” Proceedings of the IEEE , vol. 98, no. 1, pp. 42-66, Jan. 2010. [2] [3] I. Stark, “Thermal energy harvesting with thermo life, ” in Proc. IEEE Wearable and Implantable Body Sensor Networks, Apr. 2006, pp.19-22. [4] R. Venkatasubramanian, C. Watkins, D. Stokes, J. Posthill, and C. Caylor, “Energy harvesting for electronics with thermoelectric devices using nanoscale materials,” in Proc. IEEE Electron Devices Meeting 2007, Dec. 2007, pp.367-370. [5] D. S. H. Chan, J. T. Phillips, and J. C. Phang, “A comparative study of extraction methods for solar cell model parameters,” Solid-State Electronics, vol. 29, no. 3, pp. 329-337, May 1986. [6] M. N. Mather, M. Malengret, and J. C. L. Clair, “100W low cost efficient PV-grid interface for rural electrification,” in Proc. IEEE International Conference on Power Electronics and Variable Speed Drives, Sep. 2000, pp. 136-139. [7] [8] D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, “A solar energy harvesting circuit for low power applications,” in Proc. IEEE International Conf. Sustainable Energy Technologies, Nov. 2008, pp. 945-949. [9] H. S. H. Chung, K. K. Tse, S. Y. R. Hui, and C. M. Mok, “A novel maximum power point tracker for pv systems,” in Proc. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, Mar. 2001, pp. 321-327. [10] H. Shao, C. Y. Tsui, and W. H. Ki, “Maximizing the harvested energy for micro-power applications through efficient MPPT and PMU design,” in Proc. 15th Asia and South Pacific Design Automation Conference, Jan. 2010, pp.75-80. [11] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526-530, Apr. 2002. [12] 吳建霖,“適用於可攜式裝置之低電壓且同步整流之升壓式轉換器,”國立中興大學碩士論文, 中華民國九十五年七月。 [13] Y. S. Hwang, M. S. Lin, B. H. Hwang, and J. J. Chen, “A 0.35μm CMOS sub-1V low-quiescent-current low-dropout regulator,” in Proc. IEEE Asian Solid-State Circuits Conference, Nov. 2008, pp. 153-156.
本論文設計之太陽能系統之穩壓電路是利用台灣積體電路製造股份有限公司(TSMC)提供之0.18μm CMOS 1P6M 1.8/3.3V Mixed Signal製程所設計實現,此面積大小為0.727 * 0.546 mm2,其工作電壓範圍為1V~1.2V,輸出電壓為穩定0.9V,其中整體平均效率可達到80%以上。

To investigate the green energy used in portable devices, this thesis presents the design of a stable voltage regulator circuit in the solar-cell system. This design includes a stable low-voltage and a current-limit DC/DC Converter. There are two control methods for the DC/DC converter, i.e., pulse width modulation (PWM) and pulse frequency modulation (PFM). Here, we utilize PFM because PWM is more difficult to design its stability control. PFM is much easier to control and capable of current limit.
As the light intensity in the solar-cell battery differs, its output voltage changes. In order to gain a stable voltage, we use the start-circuit to control the self-start function, and use the PFM boost converter to control the output of self-start circuit. When the light intensity in the solar-cell battery is strong enough to provide a stable DC voltage, the self-start circuit will be turned off, and the low dropout regulator (LDO) receives the output voltage of the converter. By using this mechanism, a stable voltage is obtained for the solar-cell system.
The circuit is designed and fabricated by using TSMC 0.18μm CMOS 1P6M 1.8V/3.3V mixed signal technology. The chip size is 727mm
其他識別: U0005-1308201019111900
Appears in Collections:電機工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.