Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8829
標題: 以逆方法由系統輸出重建順滑曲面與系統狀態
Reconstructing Sliding Vector and State Variables from System Output using Inverse Method
作者: 林嘉富
Lin, Chia-Fu
關鍵字: inverse problems;逆問題;output feedback;variable structure systems;sampled-data systems;輸出回授;可變結構系統;取樣資料系統
出版社: 電機工程學系所
引用: Bibliography [1] B. S. Heck and A. A. Ferri, “Application of output feedback for variable structure systems,” AIAA J. Guid. Contr. Dyn., vol. 12, no.6, pp. 932-935, 1989. [2] S. H. Żak and S. Hui, “On variable structure output feedback controllers for uncertain dynamic systems,” IEEE Trans. Automat. Contr., vol. 38, no.10, pp. 1509-1512, Oct. 1993. [3] R. El-Khazali and R. A. DeCarlo, “Output feedback variable structure control design,” Automatica, vol. 31, no. 6, pp. 805-816, 1995. [4] B. S. Heck, S. V. Yallapragada, and M. K. H. Fan, “Numerical methods to design the reaching phase of output feedback variable structure control,” Automatica, vol. 31, no. 2, pp. 275-279, 1995. [5] C. Edwards and S. K. Spurgeon, “Sliding mode stabilization of uncertain systems using only output information,” Int. J. Contr., vol. 62, no. 5, pp. 1129-1144, 1995. [6] B. M. Diong and J. V. Medanic, “Dynamic output feedback variable structure control for system stabilization,” Int. J. Contr., vol. 56, no.3, pp. 607-630, 1992. [7] S. K. Bag, S. K. Spurgeon, C. Edwards, “Output feedback sliding mode design for linear uncertain systems,” IEE Proc. Control Theory Appl., vol. 144, no. 3, pp. 209-216, 1997. [8] C. Edwards and S. K. Spurgeon, “Compensator based output feedback sliding mode controller design,” Int. J. Contr., vol. 71, no. 4, pp. 601-614, 1998. [9] Q. P. Ha, H. Trinh, H. T. Nguyen, and H. D. Tuan, “Dynamic output feedback sliding-mode control using pole placement and linear functional observers”, IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 1030-1037, Oct. 2003. [10] K.-H. Liou, “A post-filtering approach to output feedback variable structure control,” M.S. thesis, Dept. Electrical Eng., National Chung-Hsing Univ., Taichung, Taiwan, R.O.C., 2000. [11] C.-F. Lin, W.-C. Su, and K.-H. Liou, “Post-filtering output feedback variable structure control,” in Proc. 2005 American Control Conf., pp. 4655-4660, Portland, Oregon, Jun. 2005. [12] Y. Itkis, Control Systems of Variable Structure. New York: Wiley, 1976. [13] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Contr., vol. AC-22, no. 2, pp. 212-222, Apr. 1977. [14] B. L. Walcott and S. H. Żak, “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Trans. Syst., Man, Cybern. B, vol. 18, no. 1, pp. 88-104, Jan./Feb. 1988. [15] S. H. Żak and S. Hui, “Output feedback variable structure controllers and state estimators for uncertain/ nonlinear dynamic systems,” IEE Proc., Control Theory Appl., vol. 140, no. 1, pp. 41-50, Jan. 1993. [16] C. Edwards and S. K. Spurgeon, “Robust output tracking using a sliding mode controller/observer scheme,” Int. J. Contr., vol. 64, no. 5, pp. 967-983, 1996. [17] İ. Haskara, Ü. Özgüner, and V. I. Utkin, “On sliding mode observers via equivalent control approach,” Int. J. Contr., vol. 71, no. 6, pp. 1051-1067, 1998. [18] R. W. Brockett and M. D. Mesarovic, “The reproducibility of multivariable control systems,” J. Math. Anal. Appl., vol. 11, pp. 548-563, Jul. 1965. [19] R. W. Brockett, “Poles, zeros, and feedback: state space interpretation,” IEEE Trans. Automat. Contr., vol. AC-10, no.10, pp. 129-135, Apr. 1965. [20] L. M. Silverman, “Properties and application of inverse systems,” IEEE Trans. Automat. Contr., vol. AC-13, pp. 436-437, Aug. 1968. [21] D. C. Youla and P. Dorato, “On the inverse of linear dynamical systems,” IEEE Trans. Syst. Sci., Cybern., vol. SSC-5, pp. 43-48, Jan. 1969. [22] M. K. Sain and J. L. Massey “Invertibility of linear time-invariant dynamical systems,” IEEE Trans. Automat. Contr., vol. AC-14, no.2, pp. 141-149, Apr. 1969. [23] L. M. Silverman, “Inversion of multivariable linear systems,” IEEE Trans. Automat. Contr., vol. AC-14, no.3, pp. 270-276, Aug. 1969. [24] S. H. Wang and E. J. Davison, “A new invertibility criterion for linear multivariable systems”, IEEE Trans. Automat. Contr., vol. AC-18, pp. 538-539, Oct. 1973. [25] E. J. Davison and S. H. Wang, “Properties and calculation of transmission zeros of linear multivariable systems”, Automatica, vol. 10, pp. 643-658, 1974. [26] P. J. Moylan, “Stable inversion of linear systems”, IEEE Trans. Automat. Contr., vol. 22, no. 1, pp. 74-78, Feb. 1977. [27] J. R. Broussard, “The generalized state space representation of the inverse of linear systems,” IEEE Trans. Automat. Contr., vol. AC-24, no. 5, pp. 784-785, Oct. 1979. [28] P. J. Antsaklis and A. N. Michel, Linear Systems, New York: McGraw-Hill, Inc., 1998. [29] K. J. Åström, P. Hagander, and J. Sternby, “Zeros of sampled systems,” Automatica, vol. 20, no. 1, pp. 31-38, Jan. 1984. [30] C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3rd ed., New Jersey: Prentice-Hall, 1995. [31] Y. Hayakawa, S. Hosoe, and M. Ito, “On the limiting zeros of sampled multivariable systems,” Syst. Contr. Lett., vol. 2, no. 5, pp. 292-300, 1983. [32] M. Ishitobi, “A stability condition of zeros of sampled multivariable systems,” IEEE Trans. Automat. Contr., vol. 45, no. 2, pp. 295-299, Feb. 2000. [33] S. R. Weller, W. Moran, B. Ninness, and A. D. Pollington, “Sampling zeros and the Euler-Frobenius polynomials,” IEEE Trans. Automat. Contr., vol. 46, no. 2, pp. 340-343, Feb. 2001. [34] M. De La Sen, R. Bárcena, and A. J. Garrido, “On the intrinsic limiting zeros as the sampling period tends to zero,” IEEE Trans. Automat. Contr., vol. 48, no. 7, pp. 898-900, Jul. 2001. [35] P. Kudva, N. Viswanadham, and A. Ramakrishna, “Observers for linear systems with unknown inputs,” IEEE Trans. Automat. Contr., vol. 25, no. 1, pp. 113-115, Feb. 1980. [36] Y. Guan and M. Saif, “A novel approach to the design of unknown input observers,” IEEE Trans. Automat. Contr., vol. 36, no. 5, pp. 632-635, May 1991. [37] M. Hou and P. C. Müller, “Design of observers for linear systems with unknown inputs,” IEEE Trans. Automat. Contr., vol. 37, no. 6, pp. 871-875, Jun. 1992. [38] M. Darouach, M. Zasadzinski, and S. J. Xu, “Full-order observers for linear systems with unknown inputs,” IEEE Trans. Automat. Contr., vol. 39, no. 3, pp. 606-609, Mar. 1994. [39] C.-C. Tsui, “A new design approach to unknown input observers,” IEEE Trans. Automat. Contr., vol. 41, no. 3, pp.464-468, Mar. 1996. [40] S. Hui and S. H. Żak, “Observer design for systems with unknown inputs,” Int. J. Appl. Math. Comput. Sci., vol. 15, no. 4, pp. 431-446, 2005. [41] K. D. Young and S. V. Drakunov, “Sliding mode control with chattering reduction”, in Proc. 1992 American Control Conf., pp. 1291-1292, Chicago, ILL, Jun. 1992. [42] V. I. Utkin, Sliding Modes in Control and Optimization, N. Y.: Springer-Verlag, 1992. [43] Č. Milosavljevič, “General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems”, Automat. Remote Contr., vol. 46, pp. 307-314, 1985. [44] W. C. Su, S. V. Drakunov, and Ü. Özgüner, “An O(T2) boundary layer in sliding mode for sampled-data systems,” IEEE Trans. Automat. Contr., vol. 45, no. 3, pp. 482-485, Mar. 2000. [45] S. Devasia, D. Chen, and B. Paden, “Nonlinear inversion-based output tracking,” IEEE Trans. Automat. Contr., vol. 41, no. 7, pp. 930-942, Jul. 1996. [46] L. R. Hunt and G. Meyer, “Stable inversion for nonlinear systems”, Automatica, vol. 33, no. 8, pp. 1549-1554, 1997. [47] X. Wang and D. Chen, “Output tracking control of a one-link flexible manipulator via causal inversion,” IEEE Trans. Contr. Syst. Technol., vol. 14, no. 1, pp. 141-148, Jan. 2006. [48] Q. Zou and S. Devasia, “Precision preview-based stable-inversion for nonlinear nonminimum -phase systems: The VTOL example”, Automatica, vol. 43, no. 1, pp. 117-127, 2007. [49] R. M. Hirschorn, “Invertibility of nonlinear control systems,” SIAM J. Contr. Optimization, vol. 17, no. 2, pp. 289-297, Mar. 1979. [50] P. H. Meckl and R. Kinceler, “Robust motion control of flexible systems using feedforward forcing functions,” IEEE Tans. Contr. Syst. Tech., vol. 2, no. 3, pp. 245-254, Sep. 1994. [51] V. I. Utkin and K. D. Young, “Methods for constructing discontinuity planes in multidimensional variable structure systems,” Automat. Remote Contr., vol. 39, no. 10, pp. 1466-1470, 1978. [52] B. Draženović, “The invariance conditions in variable structure systems”, Automatica, vol. 5, pp. 287-295, 1969. [53] M. E. El-Ghezawi, A. S. I. Zinober, and S. A. Billings, “Analysis and design of variable structure systems using a geometric approach,” Int. J. Contr., vol. 38, no. 3, pp. 657-671, 1983. [54] L. A. Zadeh and C. A. Desoer, Linear System Theory. New York: McGraw-Hill, 1963. [55] G. C. Verghese, B. Fernadez, and J. K. Hedrick, “Stable robust tracking by sliding mode control”, Syst. Contr. Lett., vol. 10, pp. 27-34, 1988. [56] C.-Y. Chung and C.-L. Lin, “A transformed Luré problem for sliding mode control and chattering reduction,” IEEE Trans. Automat. Contr., vol. 44, no.3, pp. 563-568, Mar. 1999. [57] V. L. Syrmos and F. L. Lewis, “Transmission zeros assignment using semistate descriptions,” IEEE Trans. Automat. Contr., vol. 38, no.7, pp. 1115-1120, Jul. 1993. [58] Y.-P. Chen and J.-L. Chang, “A new method for constructing sliding surfaces of linear time-invariant systems,” Int. J. Systems Science, vol. 31, no. 4, pp. 417-420, 2000. [59] C. Edwards, S. K. Spurgeon, and R. G. Hebden, “On the design of sliding mode output feedback controllers,” Int. J. Contr., vol. 76, no. 9/10, pp. 893-905, 2003. [60] B. M. Chen, Z. Lin, and Y. Shamash, Linear Systems Theory, a Structural Decomposition Approach, Boston: Birkhäuser, 2004. [61] H. H. Rosenbrock, State-Space and Multivariable Theory, Nelson, 1970. [62] A. G. J. Macfarlane and N. Karcanias, “Poles and zeros of linear multivariable systems: a survey of the algebraic, geometric and complex-variable theory,” Int. J. Contr., vol. 24, no. 1, pp. 33-74, 1976. [63] J. R. Broussard and P. W. Berry, “The relationship between implicit model following and eigenvalue eigenvector placement,” IEEE Trans. Automat. Contr., vol. AC-25, no. 3, pp. 591-594, Jun. 1980. [64] C. Edwards and S. K. Spurgeon, Sliding Mode Control: theory and application, Bristol, PA: Taylor & Francis, 1998. [65] F. J. Bejarano, A. Poznyak, and L. Fridman, “Hierarchical second-order sliding-mode observer for linear time invariant systems with unknown inputs,” Int. J. System Science, vol. 38, no. 10, pp. 793-802, Oct. 2007. [66] L. Fridman, A. Levant, and J. Davila, “Observation of linear systems with unknown inputs via high-order sliding-modes,” Int. J. System Science, vol. 38, no. 10, pp. 773-791, Oct. 2007. [67] T. Floquet, C. Edwards, and S. K. Spurgeon, “On sliding mode observers for systems with unknown inputs,” Int. J. Adapt. Control Signal Process., vol. 21, no. 8-9, pp. 638-656, Oct.-Nov. 2007. [68] F. J. Bejarano, L. Fridman, and A. Poznyak, “Unknown input and state estimation for unobservable systems,” SIAM J. Control Optim., vol. 48, no. 2, pp. 1155-1178, Mar. 2009. [69] C. Kwan, “Further results on variable output feedback controllers,” IEEE Trans. Automat. Contr., vol. 46, no. 9, pp. 1505-1508, Sep. 2001. [70] K.-K. Shyu, Y.-W. Tsai, and C.-K. Lai, “A dynamic output feedback controller for mismatched uncertain variable structure systems”, Automatica, vol. 37, pp. 775-779, 2001. [71] M. Hou and R. J. Patton, “Input observability and input reconstruction”, Automatica, vol. 34, no. 6, pp. 789-794, 1998. [72] Y. Kaku, H. Mikami, and T. Mita, “Design of stabilized digital inverse systems,” Syst. Contr. Lett., vol. 11, pp. 123-127, 1988. [73] X. Chen, G. Zhai, and T. Fukuda, “An approximate inverse system for nonminimum-phase systems and its application to disturbance observer,” Syst. Contr. Lett., vol. 52, pp. 193-207, 2004. [74] A. Edelmayer, J. Bokor, Z. Szabó, and F. Szigeti, “Input reconstruction by means of systems inversion: a geometric approach to fault detection and isolation in nonlinear systems,” Int. J. Appl. Math. Comput. Sci., vol. 14, no. 2, pp. 189-199, 2004. [75] R. Piziak and P. L. Odell, Matrix Theory: from Generalized Inverses to Jordan Form, N. Y.: Chapman & Hall/CRC, 2007. [76] D. Chu and Y. S. Hung, “A numerically reliable solution for the squaring-down problem in system design,” Appl. Numer. Math., vol. 51, pp. 221-241, 2004. [77] J. Leventides and N. Karcanias, “Structured squaring down and zero assignment,” Int. J. Contr., vol. 81, no. 2, pp. 294-306, Feb. 2008. [78] C. Oară and Ş. Sabău, “Squaring-down descriptor systems: constructive solutions and numerical algorithms,” IEEE Trans. Automat. Contr., vol. 54, no. 4, pp. 866-870, Apr. 2009. [79] K. D. Young, P. V. Kokotovic, and V. I. Utkin, “A singular perturbation analysis of high-gain feedback systems”, IEEE Trans. Automat. Contr., vol. AC-22, no. 6, pp. 931-938, Dec. 1977. [80] O. M. E. El-Ghezawi, S. A. Billings, and A. S. I. Zinober, “Variable-structure systems and system zeros”, IEE Proc., Pt. D, vol. 130, no. 1, pp. 1-5, Jan. 1983. [81] M. Darouach, “Existence and design of functional observers for linear systems,” IEEE Trans. Automat. Contr., vol. 45, no.5, pp. 940-943, May 2000. [82] H. Trinh, T. D. Tran, and T. Fernando, “Disturbance decoupled observers for systems with unknown inputs,” IEEE Trans. Automat. Contr., vol. 53, no. 10, pp. 2397-2402, Nov. 2008. [83] M. K. Sain and C. B. Schrader, “The role of zeros in the performance of multiinput, multioutput feedback systems,” IEEE Trans. Educ., vol. 33, no. 3, pp. 244-257, Aug. 1990. [84] C.-T. Chen, Linear System Theory and Design, 3rd ed., New York: Oxford University Press, Inc., 1999. [85] H. K. Khalil, Nonlinear Systems, 3rd ed., New Jersey: Pearson Education International, Inc., 2000.
摘要: 
本論文探討輸出回授系統之可變結構控制問題,我們發現順滑曲面函數與系統輸出之間存在一個特殊的動態映射關係,而且此映射關係的表示式與原系統的匹配型干擾量無關。若將順滑曲面映射至系統輸出的動態關係定義為順向映射,此順向映射可由一個降階的動態系統實現,此降階系統的極點與順滑動態模式一致,而其傳遞零點與原系統零點相同。
在系統狀態無法量測的情況下,其順滑曲面也無法量測獲得,本論文提出左逆運算動態補償器只使用系統輸出來重現順滑曲面,由於原系統傳遞零點的倒數是這個逆動態補償器的極點,因此其穩定度需最小相位條件來確保。類似的方法可擴展為觀測無法量測的系統狀態,由輸入-輸出的觀點與特性來看,此無法量測的順滑曲面可被視為虛擬的系統輸出,由此我們提出的動態映射觀念並非僅適用在可變結構控制應用,此觀念更可應用在一般的線性系統。本論文不僅探討與提出此動態映射的存在條件,也針對原系統相對階數大於一(也就是 det(CB) = 0)所形成的執行問題提出解決方法。

In this dissertation, a dynamic mapping approach to the variable structure output feedback control problems is proposed. Given the sliding surface designed through standard procedures with the assumption of full state accessibility, it is found that this sliding vector can be related to the system output by the proposed dynamic mapping. This mapping relationship is invariant of the matched disturbances, which lie in the control space. Define the forward mapping from the sliding surface to the system output. This forward mapping can be realized as a reduced order system structure. The associated system modes of the forward mapping coincide with those of the sliding dynamics. Furthermore, the transmission zeros of the forward mapping correspond with those of the original full order system.
If the system state is inaccessible, we proposed to reconstruct the sliding surface with the output information alone through the inversion of the forward mapping, i.e. the associated inverse compensator. The reciprocal of each system transmission zero corresponds to one pole of the inverse compensator. Hence, minimum phase of the original system becomes the necessary condition for the stability of inversion. Since the system state is not fully measurable, the sliding surface constructed with system state can be treated as the pseudo system output from the input-output perspective. By using the proposed mapping conception, we can retrieve not only the pseudo system output but also the inaccessible system state. The existence conditions of the mapping and the implementation problems due to the higher system relative degree, i.e. det(CB) = 0, are studied and solved herein.
URI: http://hdl.handle.net/11455/8829
其他識別: U0005-1407201019021400
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.