Please use this identifier to cite or link to this item:

`http://hdl.handle.net/11455/8859`

標題: | 進化群組群粒子聚最佳化設計之模糊控制器與遞迴式類神經網路及加強式移動機器人控制應用 Fuzzy Controller / Recurrent NN Design by Evolutionary Group-based PSO For Reinforcement Mobile Robot Control |

作者: | 張育誠 Chang, Yu-Cheng |

關鍵字: | PSO;粒子群聚最佳化;Fuzzy System;Hexapod Robot;Wheeled mobile robot;模糊系統;六足機器人;二輪機器人 |

出版社: | 電機工程學系所 |

引用: | [1] C. F. Juang, “Combination of on-line clustering and Q-value based GA for reinforcement fuzzy system design,” IEEE Trans. Fuzzy Systems, vol. 13, no. 3, pp. 289-302, June 2005. [2] R. Alcalá, J. Alcalá-Fdez, J. Casillas, O. Cordón, and F. Herrera, “Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems,” International Journal of Intelligent Systems, vol. 22, no. 9, pp. 909-941, Sep. 2007. [3] E. G. Mansoori, M. J. Zolghadri, S. D. Katebi, “SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data,” IEEE Trans. Fuzzy Systems, vol. 16, no. 4, pp. 1061-1071, Aug. 2008. [4] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle swarm-optimized fuzzy-neural network for voice-controlled robot systems,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1478-1489, Dec. 2005. [5] C. F. Juang and C. Lo, “Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence,” Fuzzy Sets and Systems, vol. 159, no. 21, pp. 2910-2926, Nov. 2008. [6] K. D. Sharma, A. Chatterjee, and A. Rakshit, “A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization,” IEEE Trans. Fuzzy Systems, vol. 17, no. 2, pp. 329-342, April 2009. [7] F. J. Lin, L. T. Teng, J. W. Lin and S. Y. Chen, “Recurrent functional-link-based fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization, IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1557-1577, May 2009. [8] C. F. Juang, C. M. Hsiao, and C. H. Hsu, “Hierarchical cluster-based multi-species particle swarm optimization for fuzzy system optimization,” IEEE Trans. Fuzzy Systems, vol. 18, no. 1, pp. 14-26, Feb. 2010. [9] T. Ray and K. M. Liew, “Society and civilization: an optimization of algorithm based on the simulation of social behavior,” IEEE Trans. Evolutionary Computation, vol. 7, no. 4, pp. 386-396, Aug. 2003. [9] T. Ray and K. M. Liew, “Society and civilization: an optimization of algorithm based on the simulation of social behavior,” IEEE Trans. Evolutionary Computation, vol. 7, no. 4, pp. 386-396, Aug. 2003. [10] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm optimization,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp 225-239, June 2004. [11] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by a particle swarm model using speciation,” IEEE Trans. Evolutionary Computation, vol.10, no.4, pp.440-458, Aug. 2006. [12] W. F. Leong and G. G. Yen, “PSO-based multiobjective optimization with dynamic population size and adaptive local archives,” IEEE Trans. Syst., Man, and Cyber. Part B: Cyber., vol. 38, no. 5, pp. 1270-1293, Oct. 2008. [13] Y. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” Proc. IEEE Cong. Evolutionary computation, 1998, pp. 69-73. [14] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimentional complex space,” IEEE Trans. Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb., 2002. [15] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Trans. Evolutionary Computation, vol. 8, no. 3, pp. 240-255, June 2004. [16] X. Chen and Y. Li, “A modified PSO structure resulting in high exploration ability with convergence guaranteed,” IEEE Trans. Syst., Man, and Cyber., Part B: Cybernetics, vol. 37, no. 5, pp. 1271-1289, Oct. 2007. [17] W. J. Zhang and X. F. Xie, “DEPSO: hybrid particle swarm with differential evolution operator,” Proc. IEEE Int. Conf. Syst., Man and Cyber., vol. 4, no. 4, pp. 3816-3821, Oct. 2003. [18] C. F. Juang and C. H. Hsu, “Temperature control by chip-implemented adaptive recurrent fuzzy controller designed by evolutionary algorithm,” IEEE Trans. Circuits and Systems- I: Regular Papers, Vol. 52, No. 11, pp. 2376-2384, Nov. 2005. [19] Y. P. Chen, W. C. Peng, and M. C. Jian, “Particle swarm optimization with recombination and dynamic linkage discovery,” IEEE Trans. Syst., Man, and Cyber., Part B- Cyber., vol. 37, no. 6, pp. 1460-1470, Dec. 2007. [20] C. F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,” IEEE Trans. Syst., Man, and Cyber., Part B: Cybernetics, vol. 34, no. 2, pp. 997-1006, April 2004. [21] F. Grimaccia, M. Mussetta, and R.E. Zich, “Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics,” IEEE Trans. Antennas and Propagation, vol. 55, no. 3, Part 1, pp. 781-785, March 2007. [22] S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K. Y. Chan, “Improved hybrid PSO-based wavelet neural network for modeling the development of fluid dispensing for electronic packaging, IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3447-3460, Sep. 2008. [23] S. Jeong; S. Hasegawa, K. Shimoyama, and S. Obayashi, “Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization,” IEEE Trans. Computational Intelligence Mag., vol. 4, no.3, pp. 36-44, Aug. 2009. [24] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349-366, Aug. 2000. [25] P.A.Mastorocostas and J. B. Theocharis, “A recurrent fuzzy-neural model for dynamic system identification,” IEEE Trans. Syst., Man Cybern., Part B: Cybern., vol. 32, no. 2, pp. 176-190, Apr. 2002. [26] C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation,” IEEE Trans. Industrial Electronics, vol. 53, no. 3, pp. 941-949, June 2006. [27] C. F. Juang, R. B. Huang and Y. Y. Lin, “A recurrent self-evolving interval type-2 fuzzy neural network for dynamic system processing,” IEEE Trans. Fuzzy Systems, vol. 17, no. 5, pp. 1092-1105, Oct. 2009. [28] D. P. Mandic and J. A. Chambers. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability, Wiley, New York, 2001. [29] J. Mazumdar and R. G. Harley, “Recurrent neural networks trained with backpropagation through time algorithm to estimate nonlinear load harmonic currents,” IEEE Trans. Industrial Electronics, vol. 55, no. 9. pp. 3484-3491, Sep. 2008. [30] J. C. Bongard and H. Lipson, “Nonlinear system identification using coevolution of models and ests,” IEEE Trans. Evolutionary Computation, vol. 9, no. 4, pp. 361-384, Aug. 2005. [31] S. Still, K. Hepp, and R. J. Douglas, “Neuromorphic walking gait control,” IEEE Trans. Neural Networks, vol. 17, no. 2, pp. 496-508, March 2006. [32] R. Reeve and J. Hallam, “An analysis of neural models for walking control,” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 733-742, May 2006. [33] Beer, R.D. and Gallagher, J.C., “Evolving dynamical neural networks for adaptive behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 92-122, 1992. [34] Beer, R.D., “The dynamics of adaptive behavior: A research program”, Robotics and Autonomous Systems, vol. 20, no. 2-4, pp. 257-289, 1997. [35] J. Kodjabachian and J. A. Meyer, “Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects,” IEEE Trans. Neural Networks, vol. 9, pp. 796-812, 1998. [36] A. Blanco, M. Delgado, and M. C. Pegalajar, “A real-coded genetic algorithm for training recurrent neural networks,” Neural Networks, vol. 14, pp. 93-105, 2001. [37] R. Xu, D. C. Wunsch, and R. L. Frank, “ Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization,” IEEE Trans. Computational Biology and Bioinformatics, vol. 4, no. 4, pp. 681-692, Oct.-Dec. 2007. [38] M. Li; W. B. Liu, and X. J. Wang, “Multi-agent decision model and application based on recurrent neural network and particle swarm optimization,” Proc. 4th Int. Conf. Natural Computation, vol. 2, pp. 469-473, Oct. 2008. [39] F. Cupertino, V. Giordano, D. Naso and L. Delfine, “Fuzzy control of a mobile robot,” IEEE Robot Autom. Mag., vol. 13, no. 4, pp. 74-81, Dec. 2006. [40] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Trans. Fuzzy Systems, vol. 12, no. 524-539, 2004. [41] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211-221, Apr. 2007. [42] I. Baturone, F.J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of embedded DSP-based fuzzy controllers for autonomous mobile robots,” IEEE Trans. on Ind. Electron., vol. 55, no. 2, pp. 928-936, Feb. 2008. [43] C. L. Hwang and C. Y. Shih, “A distributed active-vision network-space approach for the navigation of a car-like wheeled robot," IEEE Trans. on Ind. Electron., vol. 56, no. 3, pp. 846-855, March 2009. [44] P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell, and H. J. W. Spoelder, “Behavior-based neuron-fuzzy controller for mobile robot navigation,” IEEE Trans. Instrum. Meas., vol. 52, no. 4, pp.13351340, Aug. 2003. [45] N. B. Hui, V. Mahendar, and D. K. Pratihar, “Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches,” Fuzzy Sets and Systems, vol. 157, pp. 2172-2204, 2006. [46] A. Zhu and S. X. Yang, “Neurofuzzy-based approach to mobile robot navigation in unknown environments,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 4, pp. 610-621, Jul. 2007. [47] M. Mucientes and J. Casillas, “Quick design of fuzzy controllers with good interpretability in mobile robotics,” IEEE Trans. Fuzzy Systems, vol. 15, no. 4, pp. 636-651, Aug. 2007. [48] E. Zalama, J. Gomez, M. Paul, and J.R. Peran, “Adaptive behavior navigation of a mobile robot,” IEEE Trans. Syst., Man and Cyber., Part A: Systems and Humans, vol. 32, no.1, pp. 160-169, 2002. [49] Y. Cang, N.H.C. Yung, and D. Wang, “A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance,” IEEE Trans. Syst., Man, and Cyber., Part B: Cyber., vol. 33, no. 1, pp. 17-27, Feb. 2003. [50] V. Lumelsky and T. Skewis, “Incorporating range sensing in the robot navigation function,” IEEE Trans, Syst., Man, and Cyber., vol. 20, no. 5, pp. 1058-1069, Oct. 1990. [51] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. of IEEE Int. Conf. on Neural Networks, Perth, Australia, pp. 1942-1948, Dec., 1995. [52] J. Kennedy, R. Eberhart and Y. Shi, “Swarm Intelligence, ” Morgan Kaufmann Publisher, 2001. [53] C.F. Juang, “A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms,” IEEE Trans. Fuzzy Systems, vol.10, no. 2, pp. 155-170, April 2002. [54] V. Petridis, S. Kazarlis, and A. Papaikonomou, “A genetic algorithm for training recurrent neural networks,” in Int. Joint Conf. Neural Networks, 1993, pp. 2706-2709. [55] O. Michel, “Webots: Professional Mobile Robot Simulation,” International Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39-42, 2004. [56] C. F. Juang, Y. C. Chang, and C. M. Hsiao, “Evolving gaits of a hexapod robot by recurrent neural networks with symbiotic species-based particle swarm optimization,” IEEE Trans. Industrial Electronics, in press, 2010. [57] Z. Michalewicz, Genetic Algoritrhms+Data Structures= Evolution Programs, 3rd Ed., Springer, 1999. |

摘要: | 本論文提出了一種進化群組粒子群聚最佳化演算法 （EGPSO），來設計模糊控制器（FC）和全連接遞迴類神經網絡（FCRNNs）。 EGPSO使用以群組為基礎的架構，將交配和突變加入到粒子群聚最佳化演算法裡。 EGPSO以動態的形式產生群組，並以群組的方式挑選要交配的母代、更新和取代粒子。 EGPSO並且引入一種新的適應性交叉速度突變（ACVMO），以提高搜索能力。 EGPSO並用於加強式零階 TSK型的FC和FCRNNs之自由參數設計。經由與其它群聚最佳化演算法之比較，結果顯示了EGPSO的有較好的設計能力。 EGPSO設計之FC已應用於機器人在未知環境之之導航，在此應用中，機器人透過EGPSO設計之FC學習跟隨障礙物邊緣的行為。這種行為是在一個未知環境中所建立，且事先沒有收集輸入-輸出的訓練參數。 本論文也提出一種行為管理器，來整合邊界跟隨行為和尋標的行為，以至於能夠在未知環境中導航以及解決死循環 (dead-cycle) 的問題。 在一些複雜的環境中，行動機器人成功的導航，證明了以EGPSO設計之FC為基礎的導航是可行的。 EGPSO設計之FCRNN則應用於六足機器人的移動控制學習。 利用加強式訊號，六足機器可自我學習六隻腳之步伐協調控制，以完成直線前進運動。最後，本論文展示了使用所提出的以EGPSO設計之FC為基礎的導航方法兩輪機器人在真實世界中導航的結果。以EGPSO設計之FCRNN亦實際應用在實體六足機器人的步乏控制。 This thesis proposes an evolutionary group-based particle swarm optimization (EGPSO) algorithm, for fuzzy controller (FC) and fully connected recurrent neural network (FCRNN) design. The EGPSO uses a group-based framework for incorporating crossover and mutation operations into particle swarm optimization. The EGPSO dynamically forms different groups for selecting parents in crossover operations, particle updates and replacements. A new adaptive cross-velocity-mutated operation (ACVMO) is incorporated to improve search ability. The EGPSO is applied to design all of the free parameters in a zero-order Takagi-Sugeno-Kang (TSK)-type FC and FCRNNs. The EGPSO performance is compared with different population-based optimizations in theses design problems and the results demonstrate the superiority of the EGPSO. The EGPSO-designed FC is applied to mobile robot navigation in unknown environments. In this application, the robot learns the object boundary-following behavior through an EGPSO-designed FC. A simple learning environment is created for building this behavior without an exhaustive collection of input-output training pairs in advance. A behavior supervisor is proposed to combine the boundary-following behavior and the target seeking behavior for navigation, and the problem of dead cycles is considered. Successful mobile robot navigation in several complex environments verifies the EGPSO-designed FC navigation approach. The EGPSO-designed FCRNN is also applied to hexapod robot locomotion control learning. A hexapod robot successfully learns the coordination of gaits for movement in straight line using only reinforcement signals. Finally, this thesis presents practical wheeled mobile robot control results using the proposed robot navigation approach based on the EGPSO-designed FC. The EGPSO-design FCRNN is also practically applied to control the gaits of a real hexapod robot for forward movement. |

URI: | http://hdl.handle.net/11455/8859 |

其他識別: | U0005-1908201017324500 |

Appears in Collections: | 電機工程學系所 |

Show full item record

TAIR Related Article

#### Google Scholar^{TM}

Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.