Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/8891
DC FieldValueLanguage
dc.contributor楊晴雯zh_TW
dc.contributorCING-WUN YANGen_US
dc.contributor陶金旭zh_TW
dc.contributorJIN-SYU TAOen_US
dc.contributor.advisor廖俊睿zh_TW
dc.contributor.advisorJYUN-RUEI LIAOen_US
dc.contributor.author劉讓熙zh_TW
dc.contributor.authorLiu, Jang-Hsien_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:42:15Z-
dc.date.available2014-06-06T06:42:15Z-
dc.identifierU0005-2107201015333100zh_TW
dc.identifier.citation[1] 林新德,“Turbo C 範例教本”,學貫行銷,2001. [2] 李懷哲,“極座標之傅立葉體積成像”,國立中興大學,2006 [3] 張智星,“MATLAB程式設計與應用”,清蔚科技,2000 [4] Alan V.Oppenheim and Ronald W. Schafer,“Discrete-Time Singnal Processing,”Prentice Hall,1989. [5] A.Averbuch,Y. Shkolnisky,“3D Discrete X-ray Transform”,Appl. Comput. Harmon.Anal,vol.17,pp.529-276,2004. [6]“ Fastest Fourier Transform in the West“, http://www.fftw.org/. [7] L.R. Rabiner, R.W. Schafer, C.M. Rader, The Chirp Z-Transform Algorithm, IEEE Trans. Audio Electroacoustics vol.17,pp.86–92,1969.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/8891-
dc.description.abstract高解析度體積成像的需求隨著現代電腦科技的進步而日益增加,要如何有效處理巨大的體積資料在體積成像的技術中成為一個重要的議題。三維離散X射線轉換法(3D Discrete X-ray Transform)相較於傳統的體積成像法,省去了內插法的環節,不僅以更簡化的流程來運算,更可以避免內插法所造成的資料數值遭受破壞,因此有著優越的運算優勢,適合用來快速產生體積資料的投影影像。 本篇論文將會先對三維離散X射線轉換法的概念與理論作詳細的說明與介紹,在體積資料的投影面,我們在論文中介紹如何選取投影面所對應的視角,三維離散X射線轉換法將可以在實做的即時運算部分有著最少的運算流程,將只需要做兩次的一維離散反傅立葉轉換(1D Discrete Inverse Fourier Transform),在速度上是大幅度的縮短即時運算的時間,最後我們會呈現出實作後的投影圖像與運算時間,並對我們的實驗結果做進一步的討論。zh_TW
dc.description.abstractWith the development of modern computer technology, the need for high-resolution volume visualization is rapidly increasing. How to visualize large volumetric datasets effectively becomes an important problem. Comparing to traditional volume rendering techniques, 3D discrete X-ray transform (3D DXT) does not need interpolation. This simplifies the implementation of the visualization algorithm and eliminates distortions caused by interpolation. Therefore, 3D DXT has low computational complexity and is suitable for interactive visualization applications. This thesis first introduces the concepts of 3D DXT. The implementation of the inverse transform of 3D DXT involves two steps. The first step is to derive the relationship of the viewing angle and the discrete slopes in 3D DXT projection. The second step is to apply 2D inverse fast Fourier transform (FFT) to the 2D plane extracted from 3D DXT. Since the inverse transform of 3D DXT needs only 2D FFT, it can be easily implemented and its speed is very fast. Finally, we will show the results of the implementation.en_US
dc.description.tableofcontents致謝.......................................................i 摘要......................................................ii Abstract.................................................iii 目錄......................................................iv 圖目錄......................................................v 表目錄.....................................................vi 第一章 緒論...............................................1 1.1簡介....................................................1 1.2 動機與目的..............................................1 1.3 論文架構................................................1 第二章 論文回顧............................................3 2.1 體積成像演算法回顧........................................3 2.2 三維連續X射線轉換法.......................................4 2.3 半離散X射線轉換法.........................................5 2.4 離散傅立葉切片理論........................................9 2.5 離散X射線轉換...........................................11 2.6 三維離散X射線轉換法之實現.................................12 2.7 總結..................................................14 第三章 三維離散X射線轉換演算法反轉實做細節....................15 3.1 投影面的產生方法........................................ 17 3.2 離散傅立葉轉換..........................................18 3.3 總結..................................................21 第四章 輸出結果及討論......................................22 4.1 影像結果...............................................22 4.2 成像速度...............................................30 4.3 總結..................................................30 第五章 結論..............................................31 參考文獻...................................................32zh_TW
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107201015333100en_US
dc.subjectVolume Renderingen_US
dc.subject體積成像zh_TW
dc.subject3D Discrete X-Ray Transformen_US
dc.subjectFourier Slice Theoremen_US
dc.subject三維離散X射線轉換zh_TW
dc.subject傅立葉切片理論zh_TW
dc.title三維離散X光轉換之反轉換實現zh_TW
dc.titleImplementation of Inverse Transform for 3D discrete X-ray transformen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
Appears in Collections:電機工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.