Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89062
標題: The impact of elevated carbon dioxide and fertilization on tomato – Spodoptera litura interaction
上升二氧化碳及施肥對於番茄與斜紋夜蛾交互作用之影響
作者: 羅大偉
Ta-Wei Lo
關鍵字: 上升二氧化碳;肥料;植物生長表現;番茄;斜紋夜蛾;Elevated carbon dioxide;Fertilizer;Solanum lycopersicum;Spodoptera litura
引用: 陳文雄和張煥英。2009。斜紋夜蛾。37-39頁。林正忠、林明瑩、林益昇、胡仲祺、袁秋英、陳文雄、陳文華、陳昇寬、黃賢良、黃晉興、彭瑞菊、楊秀珠、蔡竹固、蔡東纂、鄧汀欽、鄭安秀、蘇俊峰 (編輯)。植物保護圖鑑系列19-甜瓜保護。行政院農業委員會動植物防疫檢疫局,台北。 楊偉正。1992。53頁。楊偉正 (編輯)。台灣地區現有作物栽培品種名錄《茄科篇》。農業試驗所、中國種苗改進協會,台北。 費雯綺和王喻其。2007。229頁。費雯綺和王喻其 (編輯)。植物保護手冊─蔬菜篇。行政院農業委員會毒物藥物試驗所,台中。 戴振洋、陳榮五、蔡宜峰。2009。牛番茄介質耕栽培技術。農業世界307: 78-88。 Agrell J, McDonald EP, Lindroth RL. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88: 259-272. Augner M. 1995. Low nutritive quality as a plant defence: effect of herbivore-mediated interactions. Evol Ecol 9: 605-616. Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47: 817-844. Barbehenn RV, Karowe DN, Chen Z. 2004. Performance of a generalist grasshopper on a C3 and C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140: 96-103 Barto K, Enright S, Eyles A, Wallis C, Chorbadjian R, Hansen R, Herms DA, Bonello P, Cipollini D. 2008. Effects of fertilization and fungal and insect attack on systemic protein defenses of Austrian pine. J Chem Ecol 34: 1392-1400. Baxter R, Ashenden TW, Sparks TH, Farar JF. 1994. Effect of elevated carbon dioxide on three montane grass species: I. Growth and dry matter partitioning. J Exp Bot 45: 305-315. Bazin A, Goverde M, Erhardt A, Shykoff JA. 2002. Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecol Entomol 27: 271-278. Benrey B, Denno RF. 1997. The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987-999. Bhattacharyya A, Leighton SM, Babu CR. 2007. Bioinsecticidal activity of Archidendron ellipticum trypsin inhibitor on growth and serine digestive enzymes during larval development of Spodoptera litura. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 145: 669-677. Bidart-Bouzat M, Mithen R, Berenbaum M. 2005. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145: 415-424. Bolter CJ, Jongsma MA. 1995. Colorado potato beetles (Leptinotarsa decenlinpata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J Insect Physiol 41: 1071-1078. Broadway RM. 1995. Are insects resistant to plant proteinase inhibitors? J Insect Physiol 41: 107-116. Broadway RM, Duffey SS. 1988. The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. J Insect Physiol 34: 1111-1117. Broadway RM, Duffey SS, Pearace G, Ryan CA. 1986. Plant proteinase inhibitors: A defense against insects? Entomol Exp Appl 41: 33-38. Brodbeck B, Strong D. 1987. Amino acid nutrition of herbivorous insects and stress to host plants. pp. 347-364. In Barbosa P, Schultz J (eds). Insect Outbreaks. Academic Press, New York. Bryant JP, Chapin FS Ⅲ, Klein DR. 1983. Carbon/nutrient balance of boreal plant in relation to vertebrate herbivory. Oikos 40: 357-368. Casteel CL, Niziolek OK, Leakey ADB, Berenbaum MR, DeLucia WH. 2012. Effects of elevated CO2 and soil water content on phytohormone transcript induction in Glycine max after Popillia japonica feeding. Arthropod Plant Interact 6: 439-447. Ceulemans R, Mousseau M. 1994. Tansley review no. 71: effects of elevated atmospheric CO2 on woody plants. New Phytol 127: 425-446. Chacon P, Armesto JJ. 2006. Do carbon-based defences reduce foliar damage? Habitat-related effects on tree seeding performance in a temperature rainforest of Chiloe island, Chile. Oecologia 146: 555-565. Chapin FS III. 1980. Nutrient allocation and responses to defoliation in tundra plants. Arct Antarct Alp Res 12: 553-563. Christmann A, Grill E. 2013. Plant biology: Electric defence. Nature 500: 404-405. Chen F, Ge F, Parajulee MN. 2005. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environ Entomol 34: 37-46. Chen YZ, Lin L, Wang CW, Yeh CC, Hwang SY. 2004. Response of two Pieris (Lepidoptera: Pieridae) Species of fertilization of a host plant. Zool Stud 43: 778-786. Chen Y, Olson DM, Ruberson JR. 2010. Effects of nitrogen fertilization on tritrophic interactions. Arthropod Plant Interact 4: 81-94. Chen Y, Ruberson JR, Olson DM. 2008. Nitrogen fertilization rate affects larval performance and feeding and feeding, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126: 244-255. Cipollini DF, Bergelson J. 2001. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J Chem Ecol 27: 593-610. Clancy KM, Price PW. 1987. Rapid herbivore growth enhances enemy attack: sublethal plant defenses remain a paradox. Ecology 68: 733-737. Coviella CE, Morgan DJW, Trumble JT. 2000. Interactions of elevated CO2 and nitrogen fertilization: effects on production of Bacillus thuringiensis toxins in transgenic plants. Environ Entomol 29: 781-787. Coviella CE, Stipanovic RD, Trumble JT. 2002. Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot 53: 323-331. Coviella CE , Trumble JT. 1999. Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions. Conserv Biol 13: 700-712. Curtis PS ,Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113: 299-313. De Leo F, Bonade-Bottino M, Ceci LR, Gallerani R, Jouanin L. 2001. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 31: 593-602. Dixon AFG. Lee1970. Quality and availability of food for a sycamore aphid population. pp 271-287. In: Watson A (eds). Animal populations in relation to their food resources. Blackwell, Oxford. Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1586. Drake B, Gonzalez-Meler M, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48: 607-637. Dudt JF, Shure DJ. 1994. The influence of light and nutrients on foliar phenolic and insect herbivory. Ecology 75: 86-98. Duffey SS, Felton GW. 1989. Role of enzymes in agriculture. pp 289-313. In: Whitaker J, Sonnet P (eds). Biocatalysis in Agricultural Biotechnology. American Chemical Society, Washington DC. Evans J. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. Facknath S, Lalljee B. 2005. Effect of soil-applied complex fertiliser on an insect-host plant relationship: Liriomyza trifolii on Solanum tuberosum. Entomol Exp Appl 115: 67-77. Fajer EP, Bowers MD, Bazzaz FA. 1989. The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science 243: 1198-1200. Fajer ED, Bowers MD, Bazzaz FA. 1991. The effects of enriched CO2 atmospheres on the buckeye butterfly, Junonia coenia. Ecology 72: 751-754. Feeny P. 1976. Plant apparency and chemical defense. pp 1-40. In: Wallace JW, Mansell RL (eds). Recent advances in phytochemistry. Plenum Press, New York. Felton GW, Donato K, Del Vecchio RJ, Duffey SS. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15: 2667-2694. Fordyce JA, Shapiro A. 2003. Another perspective on the slowgrowth/ high-mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84: 263-268. Fox LR, Letourneau DK, Eisenbach J, Nouhuys SV. 1990. Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia 83: 414-419. Ghuamre SS, Mukherjee SN. 2003.Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect. Indian J Exp Biol 41: 895-899. Haggstrom H, Larsson S. 1995. Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola. Oecologia 104: 308-315. Hamid N, Jawaid F, Amin D. 2009. Effects of short-term exposure to two different carbon dioxide concentrations on growth and some biochemical parameters of beans (Vigna radiate and Vigna unguiculata). Pak J Bot 41: 1831-1836. Hartley SE, Jones CG, Couper GC, Jones T. 2000. biosynthesis of plant phenolic compounds in elevated atmospheric CO2. Glob Chang Biol 6: 497-506. Hattenschwiler S, Schafellner C. 2004. Gypsy moth feeding in the canopy of a CO2-enriched mature forest. Glob Chang Biol 10: 1899-1908. Hemming JDC, Lindroth RL. 1999. Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. J Chem Ecol 25: 1687-1714. Hol WHG, Vrieling K, van Veen JA. 2003. Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytol 158: 175-181. Honek A. 1991. Nitrogen fertilization and abundance of the cereal aphids Metopolophium dirhodum and Sitobion avenae (Homoptera: Aphididae). J Plant Dis Prot 98: 655-660. Hopkins WG. 1999. Introduction to plant physiology. John Wiley and Sons, Inc. New York. Houpis JLJ, Surano KA, Cowles S, Shinn JH. 1988. Chlorophyl II and carotenoid concentrations in two varieties of ponderosa pine seedlings subjected to long-term elevated carbon dioxide. Tree Physiol 4: 187-193. Hsu YT, Shen TC, Hwang SY. 2009. Soil fertility management and pest responses: a comparison of organic and synthetic fertilization. J Econ Entomol 102: 160-169. Hughes L, Bazzaz FA. 1997. Effect of elevated CO2 on interactions between the western flower thrips, Frankliniella occidentalis (Thysanoptera: thripidae) and the common milkweed, Asclepias syriaca. Oecologia 109: 286-290. Hurrell RF, Finot PA, Cuq JL. 1982. Proteinpolyphenol reactions. 1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein. J NUTR 47, 191-211. Hwang SH, Liu CH, Shen TS. 2008. Effects of plant nutrient availability and host plant species on the performance of two Pieris (Lepidoptera: Pieridae). Biochem Syst Ecol 36: 505-513. IPCC. 2007. Contribution of working of working group Ⅰto the forth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK. IPCC. 2013. working of working group Ⅰto the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Climate Change 2013: The Physical Science Basis.. Isman MB, Duffey SS. 1982. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol Exp Appl 31: 370-376. Jablonski ML, Wang X, Curtis PS. 2002. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156: 9-26. Johnson R, Narvaez J, AN G, Ryan CA. 1990. Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci U S A 86: 9871-9875. Karowe DK, Grubb C. 2011. Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J Chem Ecol 37:1332-1340 Koiwa H, Bressan RA, Hasegawa PM. 1997. Regulation of proteinase inhibitors and plant defense. Trends Plant Sci 2: 379-384. Kopper BJ, Lindroth RL. 2003. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134: 95-103. Kruger NJ. 2002. The Bradford method for protein quantitation. pp 15-22. In: Walker JM (eds). The protein protocols handbook. Humana Press, Totowa. Lake J, Wade R. 2009. Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60: 3123-3131. LaMarche VC, Grabyll DA, Fritts HC, Rose MR. 1984. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 225: 1019-1021. Lang CA. 1985. Simple microdetermination of Kejeldahl nitrogen in biological materials. Anal Chem 30: 1692-1694. Lau J, Strengbom J, Stone L, Reich P, Tiffin P. 2008. Direct and indirect effects of CO2, nitrogen, and community diversity on plant-enemy interactions. Ecology 89: 226-236. Leadley PW, Niklaus PA, Stocker R, Korner C. 1999. A field study of the effects of elevated CO2 on plant biomass and community structure in a calcareous grassland. Oecologia 118: 38-49. Leatham GF, King V, Stahmann MA. 1980. In vitro polymerization of quinones or free radicals generated by plant or fungal oxidative enzymes. Phytopathology 70: 1134-l140. Lee TM, Lin YH. 1995. Trypsin inhibitor and trypsin-like protease activity in air- or ubmergence rice (Oryza sativa L.)coleoptiles. Plant Sci 106: 43-54. Letourneau DK, Fox LR. 1989. Effects of experimental design and nitrogen on cabbage butterfly oviposition. Oecologia 80: 211-214. Lincoln DE. 1993. The influence of plant carbon dioxide and nutrient supply on susceptibility to insect herbivores. Vegetatio 104: 273-280. Lincoln PE, Couvet P. 1989. The effects of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78: 112-114. Lincoln PE, Fajer ED, Johnson RH. 1993. Plant-insect herbivore interactions in elevated CO2. Trends Ecol Evol 8: 64-68. Lindroth RL. 1989. Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomol Exp Appl 50: 29-35. Lindroth RL. 1992. Biochemical ecology of aspen-lepidoptera interactions. J Kans Entomol Soc 64: 372-380. Lindroth RL. 1996. CO2-mediated changes in tree chemistry and tree-Lepidoptera interactions. pp 347-361. In: Korner C (eds). Carbon dioxide, Populations, and Communities. Academic Press, San Diego. Lindroth RL, Arteel GE, Kinney KK. 1995. Responses of three saturniid species to paper birch grown under enriched CO2 atmospheres. Funct Ecol 9: 306-311. Lindorth RL, Kinney KK, Platz CL. 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74: 763-777. Lindroth RL, Roth S, Kruger EL, Volin JC, Koss PA. 1997. CO2-mediated changes in aspen chemistry: effects on gypsy mothperformance and susceptibility to virus. Glob Change Biol 3: 279-289. Lou Y, Baldwin IT. 2004. Nitrogen supply influences herbivoreinduced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol 135: 496-506. Lower SS, Kirshenbaum S, Orians CM. 2003. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effect on host quality. Oecologia 136: 402-411. Mattson WJ. 1980. Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11: 119-161. McManus J, Lilley TH, Haslam E. 1983. Plant polyphenols and their associations with proteins. pp 123-137. In: Hedin PA (eds). Plant Resistance to Insects. American Chemical Society, Washington DC. McManus MT, White DWR, McGregor PG. 1994. Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Res 3: 50-58. Meldau S, Erb M, Baldwin IT. 2012. Defence on demand: mechanisms behind optimal defence patterns. Ann Bot-London 110: 1503-1514. Meyer GA, Root RB. 1993. Effects of herbivoros insects and soil fertility on reproduction of goldenrod. Ecology 74: 1117-1128. Myers JH. 1985. Effect of Physiological Condition of the Host Plant on the Ovipositional Choice of the Cabbage White Butterfly, Pieris rapae. J Anim Ecol 54: 193-204. Norby RJ, Willschleger SD, Gunderson CA, Johnson DW, Ceulemans R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22: 683-714. Owensby CE, Ham JM, Knapp AK, Allen LM. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol 5: 497-506. Paez A, Hellmers H, Strain BR. 1983. CO2 enrichment, drought stress and growth of Alaska pea plants (Pisum sativium). Physiol Plant 58: 161-165. Penuelas J, Estiarte M, Llusia J. 1997. Carbon-based secondary compounds at elevated CO2. Photosynthetica 33: 313-316. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420: 403-407. Peric V, Srebric M, Jankuloski L, Jankulovska M, Zilic S, Kandic V, Mladenovic Drinic S. 2009. The effects of nitrogen on protein, oil and trypsin inhibitor content of soybean. Genetika 41: 137-144. Pierpont WS. 1983. Reactions of phenolic compounds with proteins, and their relevance to the production of leaf protein. pp. 235-267. In: Telek L, Graham HD (eds). Leaf Protein Concentrates. Avi Publishing Comp. Inc, Wesport, CT. Plett J,Wilkins O, Campbell M, Ralph S, Regan S. 2010. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant 64: 419-432. Prado FE, Gonzalez JA, Boero C, Sampietro AR. 1998. A simple and sensitive method for determining reducing sugars in plant tissue. Application to quantify the sugar content in Quinoa seedings. Phytoche Analysis 9: 58-62. Prudic KL, Oliver JC, Bowers MD. 2005. Soil nutrient effects on oviposition preference, larval performance and chemical defense of a specialist insect herbivore. Oecologia 143: 578-587. Ratzka A, Vogel H, Kilebenstein DJ, Mitchell-Olds T, Kroymann J. 2002. Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 99: 11223-11228. Rhoades DF. 1977. The antiherbivore chemistry of Lurrea. pp 135-175. In: Mabry TJ, Hunziker JH, DiFeo J (eds). Creosote Bush: Biology and Chemistry of Larrea in New World Deserts. Dowden, Hutchins on and Ross, New York. Riikonen J, Percy K, Kivimaenpaa M, Kubiske M, Nelson N, Vapaavuopr E, Karnosky D. 2010. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. Environ Pollut 158:1029-1035. Rogers HH, Peterson CM, McCrimmon JN, Cure JD. 1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ 15: 749-752. Roth SK, Lindroth RL. 1994. Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia 98: 133-138. Ryan JD, Gregory P, Tingey WM. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887. Saxe H, Ellsworth DS, Heath J. 1998. Tansley Review no. 98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139: 395-436. Saxon ME, Davis MA, Pritchard SG, Runion GB, Prior SA, Stelzer HE, Rogers JHH, Dute RR. 2004. Influence of elevated CO2, nitrogen, and Pinus elliottii genotypes on performance of the redheaded pine sawfly, Neodiprion lecontei. Can J For Res 34: 1007-1017. Sicher RC, Bunce JA. 1997. Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide. Photosynth Res 52: 27-38. Simmonds MSJ. 2003. Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64: 21-30. Simmons A, Gurr G. 2005. Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 7: 265-276. Srinivasa RM, Manimanjari D, Vanaja M, Rama RCA, Srinivas K, Rao VUM, Vekateswarlu B. 2012. Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. J Insect Sci 12: 1-10. Stahmann MA, Spencer AK, Honold GR. 1977. Cross linking of proteins by peroxidase in vitro. Biopolymers 16: 1299-l 306. Stockle CO, Dyke PT, Williams JR, Jones CA, Rosenberg NJ. 1992. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part II- Sensitivity analysis at 3 sites in the midwestern USA. Agr Syst 38: 239-256. Stout MJ, Brovont RA, Duffey SS. 1998. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersion esculentum. J Chem Ecol 24: 945-963. Strauss SY. 1987. Direct and indirect effects of host-plant fertilization on an insect community. Ecology 68: 1670-1678. Sun YC, Feng L, Gao F, Ge F. 2011. Effects of elevated CO2 and plantgenotype on interactions among cotton, aphids and parastoids. Insect Sci 18: 451-461. Tan CW, Chiang SY, Ravuiwasa KT, Yadav J, Hwang SY. 2012. Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not. Arthropod Plant Interact 6: 531-541. Thaler JS, Stout MJ, Karban R, Duffey SS. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22: 1767-1781. Traw MB, Lindroth RL, Bazzaz FA. 1996. Decline in gypsy moth (Lymantria dispar) performance on an elevated CO2 atmosphere depends upon host plant species. Oecologia 108: 113-120. Vannette R, Hunter M. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Glob Change Biol 17: 1277-1288. Velioglu YS, MazzaG, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46: 4113-4117. Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J. 2002. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob Change Biol 8: 1240-1252. Vollmann J, Grausgruber H, Wagentristl H, Wohleser H, Michele P. 2003. Trypsin inhibitor activity of soybean as affected by genotype and fertilization. J Sci Food Agric 83: 1581-1586. Waldbauer. 1968. The consumpsion and utilization of food by insect. Adv insect physiol 5: 229-288. Wall R, Appel H, Cipollini M, Schultz J. 2005. Fertility, root reserves and the cost of inducible defenses in the perennial plant Solanum carolinense. J Chem Ecol 31: 2263-2288. Williams RS, Lincoln DE, Norby RJ. 2003. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137: 114-122. Williams RS, Thomas RB, Strain BR, Lincoln DE. 1997. Effects of elevated CO2, soil nutrient levels, and foliage age in the performance of two generations of Neodiprion lecontei (Hymenoptera: Diprionidae) feeding on loblolly pine. Environ Entomol 26: 1312-1322. Wilsey BJ. 1996. Plant responses to elevated atmospheric CO2 among terrestrial biomes. Oikos 76: 201-205. Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64: 3-19. Wu G, Chen FJ, Ge F. 2006. Response of multiple generations cotton bollworm Helicoverpa armigera Hubner, feeding on spring wheat, to elevated CO2. J Appl Entomol 130: 2-9. Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Naumann CM, Moller BL. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry 65: 293-306. Zangerl AR, Rutledge CE. 1996. The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147: 599-608. Zavala JA, Nabity PD, DeLucia EH. 2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomal 58: 79-97.
摘要: 
由於在工業革命後大量使用化石燃料,導致大氣中二氧化碳濃度上升。根據聯合國政府間氣候變遷委員會 (Intergovernmental Panel on Climate Change, IPCC) 的偵測,目前大氣中二氧化碳濃度已達397 ppm,此外,IPCC也預測二氧化碳濃度可能在下一個世紀達到現在的兩倍。為瞭解二氧化碳濃度上升對植物與其植食性昆蟲之影響,前人已針對許多溫帶地區木本植物與其植食昆蟲進行探討;但對於二氧化碳上升如何影響亞熱帶作物及其害蟲方面則少有研究。另外,肥料是近代農業系統中用來提升土壤肥沃度及農作物產量的主要物質,大量及過度施用肥料之後植物化學成分也將明顯受到影響,並可能進而影響導致植食昆蟲之生長表現。因此本實驗主要是探討短期作物 (番茄) 在二氧化碳以及肥料處理下,其生物量和化學成分的改變,以及對於其害蟲斜紋夜蛾幼蟲間接影響。試驗結果顯示,二氧化碳濃度提升及施肥處理都會提升番茄的生長表現且改變其化學成分。提升二氧化碳濃度後會使番茄葉片之氮含量下降、碳氮比與胰蛋白?抑制子活性上升;施肥則會使氮含量上升,碳氮比、胰蛋白?抑制子活性與總酚類含量下降。而由於植物上行效應影響,斜紋夜蛾幼蟲生長表現也會隨之改變,其相對生長速率在二氧化碳濃度較高之處理組較慢,導致此結果之原因可能是由於二氧化碳濃度提升,使得番茄之營養量降低、防禦物質升高,進而使得幼蟲相對生長速率下降;餵食施肥處理之葉片,幼蟲則生長較快,可能由於肥料處理提升寄主植物之品質,而間接促進植食昆蟲生長。本研究結果顯示肥料之影響處理較二氧化碳來的處理影響顯著,代表雖然未來二氧化碳上升會影響作物與害蟲間的交互關係,肥料施用將會抵消二氧化碳的影響,建議未來在施肥的用量及濃度必須審慎評估,以避免因寄主品質提升而增加了害蟲的適存度。

After industrial revolution, fossil fuel was used frequently and emitted a large amount of carbon dioxide. According to Intergovernmental Panel on Climate Change (IPCC) recorded, so far, the concentration of atmosphere carbon dioxide has reached 397 ppm, and it has been predicted that the concentration might double at 2100. To evaluate the effect of elevated carbon dioxide on the interaction between plants and herbivores, scholars had studied many temperate woody plant and its herbivores. However, there is less study about how elevated carbon dioxide influences crop and its pest interactions in the tropical or subtropical areas. Besides, carbon dioxide, fertilizer could also improve soil fertility and increase crop production; besides, the content of phytochemistry is also affected dramatically and insect performance might be enhanced indirectly. In present study, we treated carbon dioxide and fertilizer on short-term vegetable crop (tomato) to evaluate its change on biomass and phytochemistry and its pest (Spodoptera litura) performance. The results showed that both fertilizer and carbon dioxide treatments enhanced tomato biomass and influenced phytochemistry. Elevated carbon dioxide decreased nitrogen content and increased C:N ratio, trypsin inhibitor activity; however, fertilizer increased nitrogen content and decreased C:N ratio, trypsin inhibitor activity and total phenolic content. Due to the bottom-up effect, S. litura also demonstrated different performance on different treated tomato. When fed S. litura with elevated carbon dioxide treated foliage, the relative growth rate was slower compare to the ambient treatment. This may due to the less host quality, like low nutrition and high defensive compounds. In contrast, S. litura performance was well when feed fertilizer-treated leaves because of improved host pant quality. Statistical analysis indicated fertilizer treatment has a powerful influence compare to carbon dioxide treatment. We concluded that elevated carbon dioxide would change the interaction between crop and its pest in the future. Nevertheless, fertilization compensates the effect of carbon dioxide in agriculture system. Therefore, we suggested being cautious in fertilization to avoid pest from getting benefit and increasing fitness indirectly.
URI: http://hdl.handle.net/11455/89062
其他識別: U0005-2811201416182570
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-31起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101036012-1.pdf747.93 kBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.