Please use this identifier to cite or link to this item:
標題: Effect of host plant species on growth performance and preference of Spodoptera litura and its parasitoid Snellenius manilae
作者: 陳思恩
Si-En Chen
關鍵字: Trophic interaction;Preference;Growth performance;Snellenius manilae;Spodoptera litura;植物-寄主-寄生蜂三階層營養關係;偏好;生長表現;馬尼拉小繭蜂;斜紋夜蛾
引用: 丁柔心。2011。利用馬尼拉小繭蜂防治斜紋夜蛾之生物學研究。碩士論文,國立中興大學昆蟲系 1-45。 王清玲、邱一中。2007。利用天敵防治作物害蟲。農業試驗所特刊 130: 1-18。 王玲平、周生茂、戴丹麗、曹家樹。2010。植物酚類物質研究進展。浙江農業學報 22: 696-701。 沈再發。1975。甘藍。專業栽培蔬菜 30: 26-32。 李欣、劉樹生、王棟。2002。寄主植物對半閉彎尾姬蜂寄主選擇行為的影響。中國生物防治18: 145-148。 周舶皓。2012。甲基茉莉花酸誘導大豆防禦反應對斜紋夜蛾及其寄生蜂馬尼拉小繭蜂之影響。碩士論文,國立中興大學昆蟲系 1-59。 秦厚國、葉正襄、黄水金、丁建、羅任華。2004。不同寄主植物與斜纹夜蛾喜食程度、生長發育及存活率的關係研究。中國生態農業學報 12: 40-42。 高穗生。1995。昆蟲之大量飼育。農業藥物毒物試驗所專題報導37: 1-8。 高豔、羅禮智。2006。寄主植物-甜菜夜蛾-寄生蜂三级營養關係的研究進展。昆蟲學報49: 333-341。 婁永根、程家安。2000。蟲害誘導的植物揮發物:基本特性、生態學功能及釋放機制。生態學報 20: 1097-1106。 張煥英、李兆彬、陳昇寬、林明瑩、宋一鑫。2008。十字花科作物重要害蟲之發生與防治。臺南區農業專訊 66: 13-22。 張娜。2009。甜菜夜蛾對寄主植物的選擇性及寄主植物對其發育的影響。博士論文,中國農業科學院。 黃毓斌, 江明耀, 丁柔心, 周桃美, 高靜華。2014。瓜實蠅防治與整合性管理策略。農業試驗所特刊 182: 1-78。 楊偉正。1992。台灣地區現有作物栽培品種名錄《茄科篇》。農業試驗所特刊 38: 1-146。 楊遠波、劉和義、呂勝由 。1997。臺灣維管束植物簡誌第二卷。行政院農委會。 邱永年。2008a。蘿蔔。原色台灣藥用植物圖鑑(一): 76。 邱永年。2008b。番茄。原色台灣藥用植物圖鑑(三): 200。 邱瑞珍、周樑鎰。1976。斜紋夜盜蟲(Spodoptera litura Fab.)之寄生蜂。台灣農業研究 25: 227-241。 郭俊毅、戴振洋、蕭政弘。2003。蔬菜育種-千寶菜、葉蘿蔔、豌豆苗及甘藍新品系之選育。臺中區農業改良場特刊 60: 71-80。 蔡竹固、黃啟鐘。1994。十字花科蔬菜病蟲草害及其綜合防治。嘉義農專推廣簡訊 49: 11-19。 陳昱初。1996。談作物病蟲害之生物防治。高雄區農業專訊 15: 1-2。 陳文雄、張煥英。2001。蔬果有機栽培之害蟲防治技術。行政院農業委員會台南 區農業改良場技術專刊 1-18。 陳文雄、張煥英、黃淑惠。2004。蔬菜蟲害之生態與防治。行政院農業委員會台南區農業改良場技術專刊 1-64。 陳淑佩、王清玲、陳秋男。2009。臺灣農作物害蟲天敵名錄。農業試驗所特刊1-466。 陳瑋婷。2013。馬尼拉小繭蜂與斑痣懸繭蜂之種間競爭以及寄主分辨能力的探討。碩士論文,國立中興大學昆蟲系 1-45。 戴振洋、郭俊毅。2007。葉菜類蔬菜育種成果及未來育種方向。臺中區農業改良場特刊 88: 57-66。 Adel MM, Sehnal F, Jurzysta M. 2000. Effects of alfalfa saponins on the moth Spodoptera littoralis. Journal of Chemical Ecology 26: 1065-1078. Ando K, Inoue R, Maeto K, Tojo S. 2006. Effects of temperature on the life history traits of endoparasitoid, Microplitis manilae Ashmead (Hymenoptera: Braconidae), parasitizing the larvae of the common cutworm, Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Japanese Journal of Applied Entomology and Zoology 50: 201-210. Bottrell DG, Barbosa P, Gould F. 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annual Review of Entomology 43: 347-367. De Bach P. 1964. Biological control of insect pests and weeds. London : Chapman and Hall. 844pp. Eben A, Benrey B, Sivinski J, Aluja M. 2000. Host species and host plant effects on preference and performance of Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Environmental Entomology 29: 87-94. Freeland WJ, Janzen DH. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist 108: 269-289. Fox LR, Letourneau, DK, Eisenbach J, Van Nouhuys S. 1990. Parasitism rates and sex ratios of a parasitoid wasp: effects of herbivore and plant quality. Oecologia 83: 414-419. Gotthard K, Nylin S, Wiklund C. 1994. Adaptive variation in growth rate: life history costs and consequences in the speckled wood butterfly, Parargeaegeria. Oecologia 99: 281-289. Gols R, Bukovinszky T, Van Dam NM, Dicke M, Bullock JM, Harvey JA. 2008. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. Journal of Chemical Ecology 34: 132-143. Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57: 303-333. Held DW, Gonsiska P, Potter DA. 2003. Evaluating companion planting and non-host masking odors for protecting roses from the Japanese beetle (Coleoptera: Scarabaeidae). Journal of economic entomology, 96: 81-87. Harvey JA, Gols R, Wagenaar R, Bezemer TM. 2007. Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. Journal of Chemical Ecology 33: 1556-1569. Kaneshiro LN, Johnson MW. 1996. Tritrophic effects of leaf nitrogen on Liomyza trifolii (Burgess) and an associated parasitoid Chrysocharis oscinidis (Ashmead) on bean. Biological Control 6: 186-192. Lang CA. 1985. Simple microdetermination of Kejeldahl nitrogen in biological materials. Analytical Chemistry 30: 1692-1694. Loughrin JH, Potter, DA., Hamilton-Kemp TR. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman). Journal of Chemical Ecology 21: 1457-1467. Ou-Yang SC, Chu YI. 1988. The comparison of the development of the tobacco cutworm (Spodoptera litura (F.)) reared with natural and artifici al diets. Chinese Journal Entomology 8: 143-150. Ohsaki N, Sato Y. 1999. The role of parasitoids in evolution of habitat and larval food plant preference by three Pieris butterflies. Researches on Population Ecology 41: 107-119. Paré PW, Tumlinson JH. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325-332. Qiu B, Zhou ZS, Luo SP, Xu ZF. 2012. Effect of temperature on development, survival, and fecundity of Microplitis manilae (Hymenoptera: Braconidae). Environmental Entomology 41: 657-664. Qiu B, Zhou Z, Xu Z. 2013. Age preference and fitness of Microplitis manilae (Hymenoptera: Braconidae) reared on Spodoptera exigua (Lepidoptera: Noctuidae). Florida Entomologist 96: 602-609. Rajapakse RH, Ashley TR, Waddill VH. 1985. Biology and host acceptance of Microplitis manilae (Hymenoptera: Braconidae) raised on fall armyworm larvae Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist 68: 653-657. Rajapakse RH, Waddill VH, Ashley TR. 1992. Effect of host age, parasitoid age and temperature on interspecific competition between Chelonus insularis Cresson, Cotesia marginiventris Cresson and Microplitis manilae Ashmead. International Journal of Tropical Insect Science 13: 87-94. Roth S, Knorr C, Lindroth RL.1997. Dietary phenolics affects performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera : Braconidae). Environmental Entomology 26: 668-671. Statistical Analysis System Institute. 1999. SAS/STAT user''s guide, version 8 (Vol. 2). SAS Institute. Slansky JrF, Feeny P. 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47: 209-228. Srinivasan R, Su FC, Huang, CC. 2013. Oviposition dynamics and larval development of Helicoverpa armigera on a highly preferred unsuitable host plant, Solanum viarum. Entomologia Experimentalis et Applicata 147: 217-224. Takabayashi J, Dicke M, Posthumus MA. 1991. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2: 1-6. Tsao R, Yu Q, Potter J, Chiba M. 2002. Direct and simultaneous analysis of sinigrin and allyl isothiocyanate in mustard samples by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 50: 4749-4753. Velioglu YS, MazzaG, Gao L, Oomah BD. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. Journal of Agricultural and Food Chemistry 46: 4113-4117. Vinson SB. 1985. The behavior of parasitoids. Comprehensive insect physiology, biochemistry and pharmacology 9: 417-469. Vinson SB, Iwantsch GF. 1980. Host suitability for insect parasitoids. Annual Review of Entomology 25: 397-419. Wheeler GS, Halpern MD. 1999. Compensatory responses of Samea multiplicalis larvae when fed leaves of different fertilization levels of the aquatic weed Pistia stratiotes. Entomologia Experimentalis et Applicate 92: 205-216. Xiao Y, Chen J, Cantliffe D, Mckenzie C, Houben K, Osborne LS. 2011. Establishment of papaya banker plant system for parasitoid, Encarsia sophia (Hymenoptera: Aphilidae) against Bemisia tabaci (Hemiptera: Aleyrodidae) in greenhouse tomato production. Biological Control 58: 239-247.
Spodoptera litura is a generalist insect herbivore and also an important agricultural insect pest in many agricultural cropping systems. All instars of larvae can feed on crop plants. Snellenius manilae is a larval parasitoid of Spodoptera species. In Taiwan, it is common found over the field; therefore, S. manilae became a very suitable bio-control agent. However, little is known about the relationship among host plant - S. litura - S. manilae; the purpose of this study is to realize the effect of host plant on the host feeding and host-searching behavior, and the indirect impact of host plant to the parasitoid. The study divided into two parts, first part is the different plant family test, and second part is same plant family test. The results show that the oviposition of female adult S. litura is not different among plant species. The S. litura larval test reveals different result between the feeding choice and development in the different plant families. The parasitoid, S. manilae, prefer to parasitize the larvae of S. litura on the cabbage, even the development and growth test revealed the similar trend. This study also demonstrated the difference with S. litura larvae choice test and S. manilae parasitic choice test. This implies that plant might have different factors to influence the host and parasitoid.

斜紋夜蛾(Spodoptera litura)為世界重要害蟲之一,因其食性廣泛可危害多科作物,故在臺灣為重要防治對象之一。馬尼拉小繭蜂(Snellenius manilae)是臺灣常見的寄生蜂,由於其為夜蛾科專一性寄生蜂,具有防治夜蛾科害蟲的潛力。本試驗想瞭解斜紋夜蛾對於不同植物是否有選擇偏好,以及其幼蟲取食不同植物後之生長表現;此外亦想瞭解,當斜紋夜蛾幼蟲於不同植物上取食,對於馬尼拉小繭蜂寄生行為以及其子代生長發育之影響;並輔以植物化學分析,藉此探討彼此間之關係。試驗結果顯示,斜紋夜蛾雌成蟲對於不同種植物並無顯著產卵偏好;斜紋夜蛾幼蟲於不同科植物試驗中,顯著偏好取食停留於番茄葉上,但取食甘藍之幼蟲生長速率卻顯著較高。同科植物試驗中,偏好與生長速率有一致的結果,皆為蘿蔔>甘藍>小葶藶;馬尼拉小繭蜂對於寄主在不同科與同科植物試驗中,皆對甘藍上的斜紋夜蛾幼蟲有較高寄生偏好,而寄生於甘藍上斜紋夜蛾幼蟲之寄生蜂子代也有較好的生長表現。由試驗之結果發現,斜紋夜蛾幼蟲與馬尼拉小繭蜂對於不同植物之偏好並沒有一致性,而植物對斜紋夜蛾幼蟲造成之影響可能會進一步影響馬尼拉小繭蜂的生長表現。試驗發現番茄與蘿蔔具有做為陷阱作物之潛力,未來若與馬尼拉小繭蜂應用做結合,其可提升田間防治之效果。
其他識別: U0005-1307201513205400
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-16起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102036010-1.pdf2.67 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.