Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/89085
標題: The improvement on liquid culture of the entomopathogenic nematodes, Steinernema abbasi
本土產蟲生線蟲 (Steinernema abbasi) 液體培養之改進
作者: 賴億彰
Yi-Chang Lai
關鍵字: Steinernema abbasi;liquid culture;Spodoptera litura;in vivo;in vitro;IJs;Steinernema abbasi;液體培養;斜紋夜蛾
引用: 參考文獻 白志方。2004。蟲生線蟲(Steinernema abbasi)感染寄主之特性,在土壤之持效性及其田間應用之研究。國立中興大學昆蟲學系博士論文。163頁。 白志方、侯豐男。2002。蟲生線蟲在害蟲防治上應用之實例。台灣昆蟲特刊3: 147-156。 白志方、侯豐男。2006。土壤因子對蟲生線蟲Steinernema abbasi (Rhabditida: Steinernematidae)殺蟲活性之影響。台灣昆蟲26: 369-377。 白煜華。2010。兩種斯氏線蟲與黑殭菌(Metarhizium anisopliae)對黃條葉蚤之防治效果。國立中興大學昆蟲學系碩士論文。84頁。 唐立正、侯豐男。2004。蟲生線蟲在害蟲防治之應用。台灣昆蟲特刊 6: 227-265。 郭哲男。2008。兩種蟲生線蟲 Steinernema abbasi與Steinernema carpocapsae對德國蜚蠊之致病評估。國立中興大學昆蟲學系碩士論文。51頁。 陳俐臻。2007。兩種蟲生線蟲 Steinernema abbasi與Steinernema carpocapsae對貓蚤(蚤目:蚤科)幼蟲侵染力之比較。國立中興大學昆蟲學系碩士論文。76頁。 陳冠仲。2009。兩種蟲生線蟲 Steinernema abbasi與S. carpocapsae對埃及斑蚊(雙翅目:蚊科)致病力之比較。國立中興大學昆蟲學系碩士論文。69頁。 陳輿賢。2004。兩種蟲生線蟲 Steinernema abbasi與Steinernema carpocapsae (線蟲目:斯氏線蟲科)對斜紋夜蛾(鱗翅目:夜蛾科)之侵染力及致病力之比較。國立中興大學昆蟲學系碩士論文。97頁。 曾美容。1995。蟲生線蟲 (Steinernema carpocapsae) 對甜菜夜蛾(Spodoptera exigua)之致病力及田間持久性。國立中興大學昆蟲學系碩士論文。59頁。 曾慶慈。2006。兩種蟲生線蟲 Steinernema abbasi與Steinernema carpocapsae對黑角舞蛾(鱗翅目:毒蛾科)致病力之比較。國立中興大學昆蟲學系碩士論文。73頁。 焦汝安。2007。兩種蟲生線蟲 Steinernema abbasi與Steinernema carpocapsae對小白紋毒蛾(鱗翅目:毒蛾科)致病力之比較。國立中興大學昆蟲學系碩士論文。71頁。 黃育仁。2003。本土產蟲生線蟲(Steinernema abbasi)及白殭菌(Beauveria bassiana)感染黃條葉蚤(Phyllotreta striolata)之研究。國立中興大學昆蟲學系碩士論文。80頁。 廖哲毅。1999。本地產蟲生線蟲(Steinernema abbasi)生物特性及對斜紋夜蛾(Spodoptera litura)致病力測定。國立中興大學昆蟲學系碩士論文。58頁。 劉穎祥。2011。本土產蟲生線蟲(Steinernema abbasi)之液體培養初步探討。國立中興大學昆蟲學系碩士論文。21-56頁。 歐陽盛芝、朱耀沂。1988。以天然與人工飼料累代飼育斜紋夜蛾(Spodoptera litura(F.))生長之比較。中華昆蟲 8: 143-150。 蕭文鳳。2007。線蟲殺蟲劑之生產與產品開發。農業生技產業季刊。31頁。 羅如娟。2001。本土產蟲生線蟲(Steinernema abbasi)之人工培養。國立中興大學昆蟲學系碩士論文。 59頁。 Abu Hatab MA, Gaugler R. 1997. Growth‐mediated variations in fatty acids of Xenorhabdus sp. J Appl Microbiol 82: 351-358. Abu Hatab MA, Gaugler R. 1999. Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biol Control 15: 113-118. Abu Hatab MA, Gaugler R, Ehlers R-U. 1998. Influence of culture method on Steinernema glaseri lipids. J Parasitol 84:215-221. Adams BJ, Nguyen KB. 2002. Taxonomy and Systematics. pp. 1-33. In: Gaugler R, ed. Entomopathogenic nematology. CABI Publishing, Wallinford, UK. Akhurst R. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121: 303-309. Akhurst R, Boemare N. 1990. Biology and taxonomy of Xenorhabdus. pp. 75-87. In: Gaugler R, Kaya HK, eds. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida. Aumann J, Ehlers RU. 2001. Physico-chemical properties and mode of action of a signal from the symbiotic bacterium Photorhabdus luminescens inducing dauer juvenile recovery in the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology 3: 849-853. Bedding RA. 1981. Low cost-in vitro mass production of Neopectana and Heterorhabditis sp. for field control of insects pests. Nematologica 27: 109–114. Bedding RA. 1984. Large scale production, storage and transport of the insect – parasitic nematodes Neoaplectana spp. and Heterorhabditis spp. Ann Appl Biol 104: 117-120. Bedding RA, Molyneux AS. 1982. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp.(Heterorhabditidae: Nematoda). Nematologica 28: 354-359. Bennett HPJ, Clarke DJ. 2005. The pgbPE operon in Photorhabdus luminescens is required for pathogenesis and symbiosis. J Bacteriol 187: 77–84. Boemare N. 2002. Interactions between the partners of the entomopathogenic bacterium nematode complexes, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology 4: 601-603. Boemare N, Akhurst R. 1988. Biochemical and physiological characterization of colony form variants in Xenorhabdus spp.(Enterobacteriaceae). J Gen Microbiol 134: 751-761. Buecher EJ, Hansen EL. 1971. Mass culture of axenic nematods uising continuous aeration. J Nematol 3: 199-200. Buecher EJ, Popiel I. 1989. Liquid culture of the entomogenous nematode Steinernema feltiae with its bacterial symbiont. J Nematol 21: 500-504. Conner JM, McSorley R, Stansly PA, Pitts DJ. 1998. Delivery of Steinernema riobrave through a drip irrigation system. Nematropica 28: 95-100. Converse V, Miller R. 1999. Development of the one-on-one quality assessment assay for entomopathogenic nematodes. J Invertebr Pathol 74: 143-148. Curran J. 1992. Influence of application method and pest population size on field efficacy of entomopathogenic nematodes. J Nematol 24: 631–636. de la Torre M. 2003. Challenges for mass production of nematodes in submerged culture. Biotechnol Adv 21: 407-416. Duncan L, McCoy C. 1996. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (Coleoptera: Curculionidae) of two species of entomogenous nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Environ Entomol 25: 174-178. Dunphy GB, Webster JM. 1989. The monoxenic culture of Neoaplectana carpocapsae DD136 and Heterorhabditis heliothidis. Rev Nematol 12: 113-123. Dutky SR, Thompson JV, Cantwell GE. 1964. A technique for the mass propagation of the DD-136 nematode. J Insect Pathol 6: 417-422. Ehlers R-U, Lunau S, Krasomil-Osterfeld K, Osterfeld KH. 1998. Liquid culture of the entomopathogenic nematode-bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. Biol Control 43: 77-86. Ehlers R-U, Stoessel S, Wyss U. 1990. The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Revue de Nematologie 13: 417-424. Elawad S, Ahmad W, Reid A. 1997. Steinernema abbasi sp. n. (Nematoda: Steinernematidae) from the Sultanate of Oman. Fund Appl Nematol 20: 435-442. Elawad SA, Gowen SR, Hague NG. 1999. The life cycle of Steinernema abbasi and S. riobrave in Galleria mellonella. Nematology 1: 762-764. Fife JP, Derksen RC, Erdal Ozkan H, Grewal PS. 2003. Effects of pressure differentials on the viability and infectivity of entomopathogenic nematodes. Biol control 27: 65-72. Forst S, Nealson K. 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev 60: 21. Friedman MJ, Gaugler R, Kaya H. 1990. Commercial production and development. pp. 153-172. In: Gaugler R, Kaya HK, eds. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida. Friedman MJ, Langston SE, Pollitt S. 1991. Mass production in liquid culture of insect-killing nematodes. pp. 23-183. eds. US Patent. Gaugler R, Brown I, Shapiro-Ilan D, Atwa A. 2002. Automated technology for in vivo mass production of entomopathogenic nematodes. Biol Control 24: 199-206. Gaugler R, Grewal P, Kaya HK, Smith-Fiola D. 2000. Quality assessment of commercially produced entomopathogenic nematodes. Biol Control 17: 100-109. Gaugler R, Han R. 2002. Production Technology. pp. 289-311. In: Gaugler R, eds. Entomopathogenic nematology. CABI Publishing, Wallinford, UK. Georgis R. 1990. Foromulation and application technology. pp. 173–194. In: Gaugler R, Kaya HK, eds. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida. Georgis R, Dunlop DB, Grewal PS. 1995. Formulation of entomopathogenic nematodes. pp. 197–205. In: Hall FR, Barry JW, eds. Biorational pest control agents: Formulation and delivery. American Chemical Society, Washington, DC. Georgis R, Gaugler R. 1991. Predictability in biological control using entomopathogenic nematodes. J Econ Entomol 84: 713-720. Georgis R, Hague N. 1991. Nematodes as biological insecticides. Pesticide Outlook 2: 29-32. Georgis R, Manweiler SA. 1994. Entomopathogenic nematodes: a developing biological control technology. Agr Zool Rev 6: 63-94. Gil G, Choo H, Gaugler R. 2002. Enhancement of entomopathogenic nematode production in in-vitro liquid culture of Heterorhabditis bacteriophora by fed-batch culture with glucose supplementation. Appl Microbiol Biotechnol 58: 751-755. Givaudan A, Baghdiguian S, Lanois A, Boemare N. 1995. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol 61: 1408-1413. Glaser RW. 1932. A pathogenic nematode of the Japanese beetle (Popillia japonica). J Parasitol 18: 119. Glaser RW. 1940. Continued culture of a nematode parasitic in the Japanese beetle. J Exp Zool 84: 1-12. Grewal PS. 2002. Formulation and application technology. pp. 265-288. In: Gaugler R, ed. Entomopathogenic nematology. CABI Publishing, Wallingford, UK. Grewal PS. 2005. Mass production. pp. 79-91. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI, eds. Nematodes as biocontrol agents.CABI Publishing, Wallingford, UK. Grewal PS, Converse V, Georgis R. 1999. Influence of production and bioassay methods on infectivity of two ambush foragers (Nematoda: Steinernematidae). J Invertebr Pathol 73: 40-44. Grewal PS, Matsuura M, Converse V. 1997. Mechanisms of specificity of association between the nematode Steinernema scapterisci and its symbiotic bacterium. Parasitology 114: 483-488. Grewal PS, Power KT, Grewal SK, Suggars A, Haupricht S. 2004. Enhanced consistency in biological control of white grubs (Coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol Control 30: 73-82. Han R, Cao L, Liu X. 1992. Relationship between medium composition, inoculum size, temperature and culture time in the yields of Steinernema and Heterorhabditis nematodes. Fund Appl Nematol 15: 223-229. Han R, Cao L, Liu X. 1993. Effects of inoculum size, temperature and time on in vitro production of Steinernema carpocapsae Agriotos. Nematologica 1: 366-375. Hatab M, Gaugler R. 1997. Growth‐mediated variations in fatty acids of Xenorhabdus sp. J Appl Microbiol 82: 351-358. Hayes AE, Fitzpatrick SM, Webster JM. 1999. Infectivity, distribution, and persistence of the entomopathogenic nematode Steinernema carpocapsae all strain (Rhabditida: Steinernematidae) applied by sprinklers or boom sprayer to dry-pick cranberries. J Econ Entomol 92: 539-546. Hirao A, Ehlers RU. 2009. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl Microbiol Bio 84: 77-85. Hirao A, Ehlers RU. 2010. Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl Microbiol Bio 85: 507-515. Hussaini S, Kavitha J, Satya, Hussain M. 2003. Survival and pathogenicity of indigenous entomopathogenic nematodes in different UV protectants. Indian J Plant Protect 31: 12-18. Jessen P, Strauch O, Wyss U, Luttmann R, Ehlers R-U. 2000. Carbon dioxide triggers recovery from dauer juvenile stage in entomopathogenic nematodes (Heterorhabditis spp.). Nematology 2: 319-324. Johnigk S-A, Ecke F, Poehling M, Ehlers R-U. 2004. Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation. Appl Microbiol Biotechnol 64: 651-658. Johnigk S-A, Ehlers R-U. 1999. Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology 1: 717-726. Kaya HK. 1990. Soil ecology. pp. 93–116. In: Gaugler R, Kaya HK, eds. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida. Kaya HK, Gaugler R. 1993. Entomopathogenic nematodes. Annu Rev Entomol 38: 181-206. Kaya HK, Stock SP. 1997. Techniques in insect nematology. pp. 281-324. In: Lacey LA, ed. Manual of techniques in insect pathology. Academic Press, San Diego. Kikuta S, Kiuchi T, Aoki F, Nagata M. 2009. Recovery of infective juveniles of the entomopathogenic nematode Steinernema carpocapsae via factors produced by insect cells and symbiotic bacteria. Nematology 11: 611-618. Koppenhofer AM, Fuzy EM. 2003. Steinernema scarabaei for the control of white grubs. Biol Control 28: 47-59. Krasomil-Osterfel K. 1995. Influence of osmolarity on phase shift in Photorhabdus luminescens. Appl Microbiol Biotechnol 61: 3748-3749. Lee DL, Atkinson HJ. 1976. Physiology of nematodes.eds. 2nd edn., Macmillan press, London, UK. p. 215. Lewis EE. 2002. Behavioural Ecology. pp. 205-224. In: Gaugler R, eds. Entomopathogenic nematology. CABI Publishing, Wallinford, UK. Liao C-Y, Tang L-C, Pai C-F, Hsiao WF, Briscoe BR, Hou RF. 2001. A new isolate of the entomopathogenic nematode, Steinernema abbasi (Nematoda: Steinernematidae), from Taiwan. J Invertebr Pathol 77: 78-80. Lindegren JE, Valero KA, Mackey BE. 1993. Simple in vivo production and storage methods for Steinernema carpocapsae infective juveniles. J Nematol 25: 193-197. McCoy CW, Shapiro DI, Duncan LW, Nguyen K. 2000. Entomopathogenic nematodes and other natural enemies as mortality factors for larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae). Biol Control 19: 182-190. Molyneux AS, Bedding RA. 1984. Influence of soil texture and moisture on the infectivity of Heterorhabditis sp. D1 and Steinernema glaseri for larvae of the sheep blowfly, Lucilia cuprina. Nematologica 30: 358-365. Moureaux N, Karjalainen T, Givaudan A, Bourlioux P, Boemare N. 1995. Biochemical characterization and agglutinating properties of Xenorhabdus nematophilus F1 Fimbriae. Appl Environ Microb 61: 2707-2712. Nguyen KB, Smart GCJ. 1994. Neosteinernema longicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a parasite of the termite, Reticulitermes flavipes (Koller). J Nematol 26: 162-174. Orcutt DM, Patterson GW. 1975. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp Biochem Physiol B 50: 579-583. Owuama CI. 2001. Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol 17: 505-515. Pace GW, Grote W, Pitt DE, Pitt JM. 1986. Liquid culture of nematodes. International Patent Application WO 86/01074. Peters A, Ehlers R-U. 1994. Susceptibility of leatherjackets (Tipula paludosa and Tipula oleracea; Tipulidae; Nematocera) to the entomopathogenic nematode Steinernema feltiae. J Invertebr Pathol 63: 163-171. Piggott SJ, Perry RN, Wright DJ. 2000. Hypo-osmotic regulation in entomopathogenic nematodes: Steinernema spp. and Heterorhabditis spp. Nematology 2: 561-566. Poinar GO, Jr. 1966. The presence of Achromobacter nematophilus in the infective stage of a Neoaplectana sp.(Steinernematidae: Nematoda). Nematologica 12: 105-108. Poinar GO, Jr. 1979. Nematodes for biological control of insects. CRC Press, Boca Raton, Florida. p. 277. Poinar GO, Jr, Gaugler R, Kaya H. 1990. Taxonomy and biology of Steinernematidae and Heterorhabditidae. pp. 23-61. In: Gaugler R, eds. Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida. Poinar GO, Jr, Thomas GM. 1966. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitology 56: 385-390. Selvan S, Gaugler R, Grewal PS. 1993. Water content and fatty acid composition of infective juvenile entomopathogenic nematodes during storage. J Parasitol 79: 510-516. Shapiro-Ilan D, Gaugler R. 2002. Production technology for entomopathogenic nematodes and their bacterial symbionts. J Ind Microbiol Biotechnol 28: 137-146. Shapiro-Ilan DI, Gouge DH, Koppenhofer AM. 2002. Factors affecting commercial success: case studies in cotton, turf and citrus. pp. 333-356. In: Gaugler R, ed. Entomopathogenic nematology. CABI Publishing, Wallingford, UK. Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP. 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38: 124-133. Sharma MP, Sharma AN, Hussaini SS. 2009. Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status–a mini review. Arch Phytopathology Plant Protect 44: 855-870. Sitaramaiah S, Gunneswara R, Hussaini S, Venkateswarlu P, Nageswara R. 2003. Use of entomopathogenic nematode Steinernema carpocapsae against Spodoptera. pp. 211–213. In: Tandon PL, Balal CR, Jalali SK, Rabindra RJ, eds. Biocontrol of lepidopterous pests. Project Directorate of Biological Control. India. Sivakumar C, Jayaraj S, Subramaniam S. 1998. Observations on Indian population of the entomopathogenic nematode Heterorhabditis bacteriophora. J Biol Control 2: 112;113. Somsook V. and P. Nanta. 1992. Mass Production of Entomogenous Nematode Steinernema carpocapsae Weiser on Artificial Diet. Agricultural Sci.10:1- 4 Stock SP, Blair GH. 2008. Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis 46: 65-75. Stoll NR. 1953. Axenic cultivation of the parasitic nematode, Neoaplectana glaseri, in a fluid medium containing raw liver extract. J Parasitol 39: 422-444. Storey, R. 1984. The relationship between neutral lipid reserves and infectivity for hatched and dormant juveniles of Globodera spp. Ann Appl Biol. 104: 511-520. Strauch O, Ehlers R-U. 1998. Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Appl Microbiol Biotechnol 50: 369-374. Strauch O, Ehlers R-U. 2000. Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid cultures. Appl Microbiol Biotechnol 54: 9-13. Stuart RJ, Gaugler R. 1996. Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode Steinernema glaseri. Can J Zool 74: 164-170. Surrey MR, Davies RJ. 1996. Pilot-scale liquid culture and harvesting of an entomopathogenic nematode Heterorhabditis bacteriophora. J Invertebr Pathol 67: 92-99. Susurluk A, Ehlers R-U. 2008. Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. Biol Control 53: 627-641. Tan L, Grewal PS. 2001. Infection behavior of the rhabditid nematode Phasmarhabditis hermaphrodita to the grey garden slug Deroceras reticulatum. J Parasitol 87: 1349-1354. Thurston GS, Ni Y, Kaya HK. 1994. Influence of salinity on survival and infectivity of entomopathogenic nematodes. J Nematol 26: 345-351. Torr P, Heritage S, Wilson M. 2004. Vibrations as a novel signal for host location by parasitic nematodes. Int J Parasitol 34: 997-999. Wang JX, Bedding RA. 1998. Population dynamics of Heterohabditis bacteriophora and Steinernema carpocapsae in in vitro solid culture. Fundam Appl Nematol 21: 165-171. White GF. 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302-303. Wilson MJ, Glen DM, George SK. 1993. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology 3: 503-511. Womersley CZ, Wharton DA, Higa LM. 1998. Survival biology. pp. 271-302. In: Perry RN, Wright DJ, eds. The physiology and biochemistry of free-living and plantparasitic nematodes. CABI Publishing, Wallingford, UK. Wright DJ, Perry RN. 1998. Respiratory physiology, nitrogen excretion and osmotic and ionic regulation. pp. 103-131. In: Perry RN, Wright DJ, eds. The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, Wallingford, UK. Wright DJ, Perry RN. 2002. Physiology and biochemistry. pp. 145-168. In: Gaugler R, eds. Entomopathogenic nematology. CABI Publishing, Wallingford, UK. Yang H, Jian H, Zhang S, Zhang G. 1997. Quality of the entomopathogenic nematode Steinernema carpocapsae produced on different media. Biol Control 10: 193-198. Yoo S, Brown I, Gaugler R. 2000. Liquid media development for Heterorhabditis bacteriophora: lipid source and concentration. Appl Microbiol Biotechnol 54: 759-763.
摘要: 
This study was conducted to culture the entomopathogenic nematode, Steinernema abbasi, on liquid media containing different components. There were two peaks of nematode adult production in the shaker flasks at 14 days after culturing. When changed the rotation speed at 70 and 90 rpm in these cultures, the yields of infective juveniles (IJs) were lower than those of the unchanged one. However, there was no significant difference between the changed and unchanged groups. When the OAK whole milk powder, low-fat milk powder, and non-fat milk powder were added into the liquid media, the IJ yields were 8×104, 2.6×104, and 4.5×103 IJs/ml, respectively. Among them, the IJ yield of the whole milk powder based medium was the highest one; however, as increased its concentration from 1.65% to 6.6%, the nematode yields decreased from 1.7×105 to 125 IJs/ml. When inoculated with 500 IJs/ml and cultured for 17 days in the 1.65% whole milk powder medium, the maximum yields reached at 16th day after culturing. The IJ yields of 1.65% and 3.3%whole milk powder media were higher than those without adding milk powder. There were statistically significant differences among these media. When incubated 1.5, 3.0, or 4.5 ml of symbiotic bacteria in the culture medium for 48 h before inoculating nematodes, the IJ yields were 6.7×104, 2.2×104, and 1.8×104 IJs/ml, respectively. The yields between these three treatments were not significantly different. However, the yields by adding 1.5, 3.0, and 4.5 ml of symbiotic bacteria together with nematodes were less than those of the amount of their initial IJ inocula. Using one-on-one bioassay, the mortalities of 5th instar larvae of Spodoptera litura treated with in vivo- and in vitro-cultured S. abbasi were 23.3% at 72 h after inoculation. There were no significant differences among the assayed time course. When applied 10, 20, and 30 IJs to each 5th instar larva of S. litura, the LT50 values of 10 IJs was significantly different with those of 20 and 30 IJs. However, the LT50 value of 20 IJs was not significantly different with that of 30 IJs. The LT50 values at the same inoculated dosage in both in vivo and in vitro cultures were not significantly different. The mortalities of 5th instar larvae of S. litura in all treatments were near 100% after incubating for 72 h. In conclusion, our results showed that addition of whole milk powder to the liquid media could raise the yield of IJs and that the nematodes cultured in the liquid medium exhibited similar pathogenicity to S. litura as those cultured in vivo.

為探討本土產蟲生線蟲Steinernema abbasi之液體培養方式及培養基成分之改進,將S. abbasi以搖瓶之方式於14天的培養過程中產生兩個成蟲高峰期,於兩高峰期將培養轉速調整為70、90 rpm並培養14天,侵染期幼蟲(infective juveniles, IJs)回收之總產量皆低於調整前之產量,但不具顯著性差異。添加市售OAK特級全脂、低脂、脫脂奶粉於培養基中,所得產量依序為8×104、2.6×104、4.5×103 IJs/ml,以添加全脂奶粉所得IJs產量最高;將全脂奶粉濃度由1.65%(w/w)調高至6.6%(w/w),IJs產量由1.7×105下降至125 IJs/ml;1.65%全脂奶粉培養17天,於第16天可達最高IJs產量;添加1.65%、3.3%(w/w)全脂奶粉後之IJs產量皆高於未添加前之產量且具顯著性差異。於培養基中加入1.5、3、4.5 ml共生菌液並培養48小時後接種線蟲,所得IJs產量依序為6.7×104、2.2×104、1.8×104 IJs/ml,隨著共生菌液添加量增加產量逐漸下降但不具顯著性差異;於培養基中加入1.5、3、4.5 ml共生菌液並同時接種線蟲,所得IJs產量皆低於接種量。經一對一生物檢定測試,體內培養與體外液體培養之線蟲對斜紋夜蛾(Spodoptera litura)第五齡幼蟲之致死率經72小時皆達23.3%,且於各時間點間不具顯著性差異。以10、20、30隻IJs對斜紋夜蛾五齡幼蟲之致病力測試,隨著濃度增加LT50逐漸減短,不論體內培養或體外液體培養,接種10 IJs之LT50皆與接種20、30 IJs之LT50具顯著性差異;接種20 IJs與30IJs之LT50則不具顯著性差異;體內培養與體外液體培養之線蟲於各濃度間之LT50皆不具顯著性差異,經72小時皆可達到近100%之死亡率。本試驗於培養基中添加全脂奶粉可有效提升S. abbasi之產量,且具有與體內培養線蟲相同之致病效果。
URI: http://hdl.handle.net/11455/89085
其他識別: U0005-0610201414101400
Rights: 同意授權瀏覽/列印電子全文服務,2017-12-30起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101036003-1.pdf2.27 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.