Please use this identifier to cite or link to this item:
標題: Population dynamics of stable fly (Stomoxys spp.) in dairy farms and the phylogeographical analysis of Stomoxys calcitrans in Taiwan
作者: 盧佳&#x5bd7
Chia-Ning Li
關鍵字: Stomoxys calcitrans;population dynamic;meteorological factor;Phylogeography;畜廄刺蠅;族群密度變化;氣象因子;親緣地理
引用: References Agee, H. R. and R. S. Patterson.1983. Spectral sensitivity of stable, face, and horn flies and behavioral responses of stable flies to visual traps (Diptera; Muscidae). Environmental Entomology 12: 1823- 1828. Ahmed, A. B., S. N. Okwielu and S. M. Samdi. 2005. Species diversity, abundance and seasonal occurrence of some biting flies in Southern Kaduna, Nigeria. African journal of Biomedical Research vol. 8; 113-118. Anonymous. 1971. Division of health annual report, Florida department of health and rehabilitative services, Tallahassee. P. 103-104. Beresford, D. V. and J. F. Sutcliffe. 2006. Studies on the effectiveness of Coroplast sticky traps for sampling stable flies (Diptera: Muscidae), including a comparison to Alsynite. J. Econ. Entomol. 99(3): 1025-1035. Beresford, D. V. and J. F. Sutcliffe. 2007. Stable fly (Stomoxys calcitrans: Diptera, Muscidae) trap response to changes in effective trap height caused by growing vegetation. Journal of Vector Ecology 33(1):40-45. Berry, I. L., and J. B. Campbell. 1985. Time and weather effects on daily feeding pattern of stable flies (Diptera: Muscidae). Environ. Entomol. 14: 336-342. Brady, J., N. Griffiths and Q. Paynter. 1995. Wind speed effects on odor source location by tsetse flies (Glossina). Vol. 20, Issue 4, P. 293–302. Campbell, J., I. Berry, D. Boxler, R. Davis, D. Clanton and G. Deutscher. 1987. Effects of stable flies (Diptera: Muscidae) on weight gain and feed efficiency of feedlot cattle. Journal of Economic Entomol. 80: 117-119. Campbell, J., S. Skoda, D. Berkbile, D. Boxler, G.Thomas, D. Adams and R. Davis. 2001. Effect of stable flies (Diptera: Muscidae) on weight gains of grazing yearling cattle. J. Econ. Etomol. 94: 780-783. Clement, M., D. Posoda, and K. A. Crandall. 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657-1659 Cliek, J. E. 2002. Attractiveness of beach ball decoys to adult Stomoxys calcitrans (Diptera: Muscidae). J. Med. Entomol. 39(1): 127-129. Creer, S, A. Malhorta, R. S. Thorpe, and W. H. Chou. 2001. Multiple causation of phylogeographical pattern as revealed by nested clade analysis of bamboo viper (Trimeresurus stejnegeri) with Taiwan. Mol Ecol 10: 1967-1981. Cruz-Vázquez, C., I. V. Mendoza, M. R. Parra and Z. García-Vázquez. 2004. Influence of temperature, humidity, and rainfall on field population trend of Stomoxys calcitrans (Diptera: Muscidae) in a semiarid climate I Mexico. Parasitol Latinoam 59: 99-103. Cruz-Vázquez, C., M. Ramos-Parra, I. Vitela-Mendoza, Z. García-Vázquez and M. T. Quintero-Martínez. 2007. Relationships between stable fly infestation with some physical facility characteristics and sanitation practices in several dairy farms in the State of Aguascalientes, Mexico. Veterinary Parasitology 149: 246-250. Dickerson, C. Z. 2007. The effects of temperature and humidity on the eggs of Aedes aegypti (L.) and Aedes albopictus (Skuse) in Texas. Ph.D. dissertation, Texas A&M University, College Station, TX. Digby, P. S. B. 1958. Flight activity in the blow fly, Calliphora erythrocephala, in relation to wind speed, with special reference to adaptation. J. Exp. Biol. 35: 776-795. Doud, C. W., D. B. Taylor and L. Zurek. 2012. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae). J. Med. Entomol. 49(2): 286-292. Doyle M. S., B. N. Swope, J. A. Hogsette, K. L. Burkhalter, H. M. Savage and R. S. Nasci. 2011. Vector competence of the stable fly (Diptera: Muscidae) for West Nile Virus. J Med Entomol 48:656–668. Drummond, A., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214. Dsouli, N., F. Delsuc, J. Michaux, E. De Stordeur, A. Couloux, M. Veuille, G. Duvallet. 2010. Phylogenetic analyses of mitochondrial and nuclear data in haematophagous flies support the paraphyly of the genus Stomoxys (Diptera: Muscidae). Infection, Genetics and Evolution 11(2011): 663-670 Dsouli-Aymes, N., J. Michaux, E. De Stordeur, A. Couloux, M. Veuille, G. Duvallet. 2010. Global population structure of stable fly (Stomocys calcitrans) inferred by mitochondrial and nuclear sequence data. Infection, Genetics and Evolution 11(2011): 334-342 Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin (version 3. 1): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics online 1: 47. Farrell, B.D. 2001. Evolutionary Assembly of the Milkweed Fauna: Cytochrome Oxidase I and the age of Tetraopes Beetles. Mol Phylogenet Evol 18: 467-478. Foil, L. D. and J. A. Hogsette. 1994. Biology and control of tabanids, stable flies and horn flies. Revue Scientifique et Technique 13(4): 1125-1158. Foil, L. D., C. L. Meek, W. V. Adam and C. J. Issel. 1983. Mechanical transmission of equine infectious-anemia virus by deer flies (Chrysops flavidus) and stable flies (Stomoxys calcitrans). J. Vet. Res. 44: 155-156. Gibbs, E. P., R. H. Johnson and A. G. Gatehouse. 1973. A laboratory technique for studying the mechanical transmission of bovine herpes mammillitis virus by the stable fly (Stomoxys calcitrans L.). Res. Vet. Sci. 14: 145-147. Gilles, J., J.-F. David and G. Duvallet. 2005. Temperature effects on development and survival of two stable flies, Stomoxys calcitrans and Stomoxys niger niger(Diptera: Muscidae), in La Réunion island. J. Med. Entomol. 42(3): 260-265. Hafez, M. and F. M. Gamal-Eddin. 1959. On the feeding habits of Stomoxys calcitrans L. and S. sitiens Rond., with special reference to their biting cycle in nature (Diptera: Muscidae). Bull. Soc. Entomol. Egypte. 43: 291-301. Hall, T. 2004. Bioedit 7.1.8 North Carolina State University, Raleigh. Hoch, A. L., T. P. Gargan and C. L. Bailey. 1985. Mechanical transmission of Rift Valley fever virus by hematophagous Diptera. Am. J. Trop. Med. Hyg. 34: 188 -193. Hogsettc, J. A. and J. P. Ruff. 1985. Stable fly (Diptera: Muscidae) migration in Northwest Florida. Environ. Entomol. 14: 206-211. Hogsette, J. A., J. P. Ruff and C. J. Jones. 1987. Stable fly biology and control in Northwest Florida. J. Agric. Entomol. 4(1): 1-11. Huang, C. Y.,W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C.W. Lin, and K. Y. Xia. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281: 31-51. Huang, C. Y., K. Xia, P. B. Yuan, and P. G. Chen. 2001. Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology. Journal of Asian earth sciences 19: 6919-639. Huang, SS. F., S. Y. Hwang, T. P. Lin. 2002. Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 11: 2249-2358 Huang Y. T., H. Sasaki and S. Shinonaga, 2006. Muscid flies associated with pasturing cattle and buffaloes in Taiwan. Med Entomol and Zoology 57(2), 151. Huang, Y. T., H. Sasaki and J. Ueda 2007. Genetic variation of stable fly (Stomoxys calcitrans) population in Taiwan. Med Entomol and Zoology 58, 55, 2007-04-01. Jacquiet, P., D. Rouet, E. Bouhsira, A. Salem, E. Liénard and M. Franc. 2014. Population dynamic of Stomoxys calcitrans (L.) (Diptera: Muscidae) in southwestern France. Revue Méd. Vét., 165, 9-10, 267-271. Jin, B. J. and Z. Jaal. 2009. Temporal changes in the abundance of Musca domestica Linn (Diptera: Muscidae) in poultry farms in Penang, Malaysia. Tropical Biomedicine 26(2): 140–148. Jones, C. J. and R. A. Weizierl. 1997. Geographical and temporal variation in Pteromalid (Hymenoptera: Pteromalidae) parasitism of stable fly and house fly (Diptera: Muscidae) pupae collected from Illinois cattle feedlots. Environ. Entomo. 26(2): 421-432. Keawrayup, S., G. Duvallet, S. Sukonthabhirom and T. Chareonviriyaphap. 2012. Diversity of Stomoxys indicus and S. calcitrans in a farm, in Wang Nam Khiao distric, Nakhon Ratchasima province, Thailand. Parasite 19: 259-265. Kitching, R. P. and P. S. Mellor. 1986. Insect transmission of Capripoxvirus. Res. Vet. Sci. 40: 255-258. Lee, J. W., L. Jiang, Y. C. Su, and I. M. Tso. 2004. Is Central Mountain Range a geographic barrier to the giant wood spider Nephila pilipes (Araneae: Tetragnathidae) in Taiwan? A population genetic approach. Zool. Stud. 43: 112-122. Leu, S. Y. 2009. Present stage and prospect of dairy industry in Taiwan. J Argi Assoc Taiwan 11(2). Lysyk, T. J. 1993. Seasonal abundance of stable flies and house flies (Diptera: Muscidae) in dairies in Alberta, Canada. J. Econ. Entomol. 86: 1746-1753. Marquez, J. G., M. A. Cummings, E. S. Krafsur. 2007. Phylogeography of stable fly (Diptera: Muscidae) estimated by diversity at ribosomal 16S and cytochrome oxidase I mitochondrial genes. Entomological Society of America 44(6): 998-1008 Masmeatathip, R., C. Ketavan and G. Duvallet. 2006. Morphological studies of Stomoxys spp. (Diptera: Muscidae) in central Thailand. Kasetsart J. (Nat. Sci.) 40 : 872 – 881. Mellor, P. S., R. P. Kitching and P. J. Wilkinson. 1987. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Res. Vet. Sci. 43: 109-112. Mullens, B. and N. G. Peterson, 2005. Relationship between rainfall and stable fly (Diptera: Muscidae) abundance on California dairies. J. Med. Entomol. 42(4): 705-708. Phasuk, J., A. Prabaripai and T. Chareonviriyaphap. 2013. Seasonal and daily flight activity of stable flies (Diptera: Muscidae) on dairy farms in Saraburi province, Thailand. Parasite 20, 17. Posada, D. 2008. jModelTest: phylogenetic model averaging . Mol Biol Evol 25: 1253-1256. Ronquist, F. and J. P. Huelsenbeck. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572. Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Schuberg, A. and P. Kuhn. 1912. Uber die Ubertragung von Krankheiten durch einheimische stechende Inseketen. Arbeiten aus dem Kaiserlichen Gesundheitsante (Berlin) 40: 209 -234. Scott, J. W. 1913. The transmission of swamp fever, pp. 180 - 189. In 24th Annual Report of the University of Wyoming Agricultural Experiment Station, Laramie, WY. Sibuet, J. C., and S. K. Hsu. 2004. How was Taiwan created? Tectonophysics 379: 159-181. Skovgård, H. and G. Nachman. 2004. Biological control of house flies Musca domestica and stable flies Stomoxys calcitrans (Diptera: Muscidae) by means of inundative releases of Spalangia cameroni (Hymenoptera: Pteromalidae). Bulletin of Entomological Research vol. 94, Issue 06, P. 555-567. Skovgård, H. and G. Nachman. 2012.Population dynamics of stable flies Stomoxys calcitrans (Diptera: Muscidae) at an organic dairy farm in Denmark based on mark-recapture with destructive sub-sampling. Environ. Entomol. 41(1): 20-29 Stein, C. D., J. C. Lotze and L. O. Mott. 1942. Transmission of equine infectious anemia by the stable fly, Stomoxys calcitrans, the horse fly, Tabanus sulcifrons (Macquart), and by injection of minute amounts of virus. Am. J. Vet. Res. 3: 183-193. Swyknkrton, C. F. M. 1936. The tsetse flies of East Africa. Trans. R. Ent. Soc. Lond. 84, 1-579 Tamura, K., D. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MAGA5: molecular evolutionary genetics analysis using maximum likelihood, evolution distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739 Taylor, D., D. R. Berkebile. 2006. Comparative efficiency of six stable fly (Diptera: Muscidae) traps. J. Econ. Entomol. 99(4): 1415-1419. Taylor, D., D. R. Berkebile and P. J. Scholl. 2007. Stable fly population dynamic in eastern Nebraska in relation to climate variables. J. Med. Entomol. 44(5): 765-771. Taylor, D. B. and D. R. Berkebile. 2011. Phenology of stable fly (Diptera: Muscidae) larvae in round bale hay feeding sites in Eastern Nebraska. Environ. Entomol. 40(2): 184-193. Taylor, D. B., R. D. Moon and D. R. Mark. 2012. Economic impact of stable flies (Diptera: Muscidae) on dairy and beef cattle production. J. Med. Entomol. 49(1): 198-209. Todd, F. A. 1948. Equine infectious anemia in Germany. Am. J. Vet. Res. 112: 199 -207. Turell, M. J., D. J. Dohm, C. J. Geden, J. A. Hogsette and K. J. Linthicum. 2010. Potential for stable flies and house flies (Diptera: Muscidae) to transmit Rift Valley fever virus. J. Am. Mosq. Control Assoc. 24: 445- 448. Tsai, C. L., X. Wan and W. B. Yeh. 2014. Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): Four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range Mol. Phylogenet. Evol. Vol. 78 P. 245–259 Vanderplank, F. L. 1948. Studies of the behavior of the tsetse-fly, Glossina pallidipes, in the field: influence of climatic factors on activity. Journal of Animal Ecology Vol. 17, No. 2, P. 245-260. Waloff, Z. and R. C. Rainby. 1951. Field studies on factors affecting the displacement of Desert Locust swarms in eastern Africa. Anti-Locust Bull. no. 9, 1-50. Williams, D. F. 1973. Sticky traps for sampling populations of Stomoxys calcitrans. J. Econ. Entomol. 66: 1274 -1280. Withers, T. M. and M. O. Harris. 1997. Influence of wind on hessian fly (Diptera: Cecidomyiidae) flight and egglaying behavior Environ. Entomol. 26(2):327-333. WMO, 2008. Measurement of Sunshine Duration, Guide to Meteorological Instruments and Methods of Observation, Wu, I. H., P. S. Yang, C. Y. Liu and W. B. Yeh. 2010. Genetic differentiation of Troidesaeacus formosanus (Lepidoptera: Papilionidae), based on cytochrome oxidase I sequences and amplified fragment length polymorphism. Ann. Entomol. Soc. Am., 103 (2010), pp. 1018–1024 Yeh, W. B., Y. L. Chang, C. H. Lin, F. S. Wu and J. T. Yang. 2004. Genetic differentiation of Loxoblemmus appenducularis complex (Orthoptera: Gryllidae): speciation through vicariant and glaciation events. Nn entomol soc am 97: 613-623 Yeh, W. B., H. M. Lee, W. C. Tu, L. C. Tang, and P. Y. Lee. 2009. Molecular differentiation and diversity of Forcipomyia tanwana (Diptera: Ceratopogonidae) based on the mitochondrial cytochrome oxidase II sequence. J Med Entomol 46: 249-256. Yuan, S. L., L. K. Lin, and T. Oshida. 2006. Phylogeography of the mole-shrew (Anourosorex yamashinai) in Taiwan: implication of interglacial refugia in a high-elevation small mammal. Mol Ecol 15: 2119-2130. Zacks, D. N. and E. R. Loew. 1989. Why is Alsynite fiberglass sheet attractive to stable flies? Exp. Biol. 48: 215-222. Zumpt, F. 1973. The Stomoxyine biting flies of the world. Diptera: Muscidae. Taxonomy, biology, economic importance and control measures. Gustav Fisher Verlag. Stuttgart, Germany. 175 p.
Stable fly (Diptera: Musidae, Stomoxys) is a global blood sucking pest, most found in the place related with animal activities especially in cattle. When the population density reached certain amount, stable fly could cause enormous economic loss by reducing the milk production, losing body weight and arrested development. In this study, the white coroplast sticky board trap was applied to survey the population densities of stable fly in dairy farms located in Dounan township of Yunlin county and Liuying district of Tainan city from March 2013 to February 2014. The population density of stable fly in Taiwan showed bimodal with one peak in March, another peak in August (Dounan) or September (Liuying). The data were analyzed with meteorological factors both 60 days and 30 days before each collection. The population in Liuying is positively correlated with wind speed, sunshine hours and relative humidity 60 days before survey. It was also positively correated with relative humidity and negatively correlated with rainy days data 30 days prior although the P value was larger than 0.05. In Dounan, the population density of stable fly correlated with temperature showed positive correlation in both 60 days and 30 days prior. The wind speed of 60 days earlier also positively correlated with population density of stable fly in Dounan. The differences in both farms indicate that other factors, such as sanitation, might affect the population density dynamics. Nonparametric analysis illustrated that stable fly population distributed unevenly in dairy farm. In addition, the sides of collecting boards that facing the barn could collect more individuals than the other sides in Dounan. The Stomoxys calcitrans are the most abundant one in dairy farms, followed by S. sitiens. Great proportion of S. calcitrans lasted in whole year, except during autumn the S. calcitrans and S. sitiens proportion was nearly 50 to 50 percent in Liuying. To understand the genetic composition and the population structure of stable fly in Taiwan, genes sequences of mitochondrial cytochrome oxidase I (COI), 16S rDNA and the nuclear intergenic spacer 2 (ITS2) of 110 individuals from 13 counties were analyzed. Phylogenetic inferences, including the sequences from Genbank, based on maximum likelihood and Bayesian inferences analysis revealed that there were two distinct lineages of stable fly found in Taiwan, although sequences of 16S rDNA and ITS2 showed no divergent pattern. Analysis of molecular variance (AMOVA) showed stable flies in Taiwan could be considered as one group judged by the low variation among populations. Moreover, low differentiation index (FST) as well as no relationship existed in pairwised nucleotide differences to the relevant geographical distances also suggest the efficient gene flow has been occurred in populations among counties. Data calibrated by the strict molecular clock with COI and 16S sequences indicates stable fly had diverged into two lineages ca. 0.35 million years ago. Lineage A including most samples from Taiwan and few from Thailand informs that the possible origination of Taiwanese stable fly is same with Thailand. While lineage B which is associated with the worldwide population including Europe, North America, and the eastern Asia indicates the other possible origination.

刺蠅屬昆蟲(Stomoxys)為雙翅目(Diptera)家蠅科(Musidae)的吸血性蠅類,好發於動物活動場所與畜牧場等地方。其族群密度高時會導致牛隻產乳量減少、體重降低、發育不良等,造成經濟上的重大損失。本研究於雲林縣斗南鎮及台南市柳營區各一處養牛場,以每個月誘捕三天的方式進行畜場廄刺蠅棲群動態調查,結果顯示廄刺蠅族群具兩個密度高峰,分別在斗南的三月及八月,以及柳營的三月及九月。此外,於兩場所採集到廄刺蠅的雄性個體皆明顯多於雌性。分析養牛場廄刺蠅棲群動態與當地氣象因子的相關性,結果顯示於採集時間前60天的平均風速、日照時間、相對濕度及溫度分別影響斗南及柳營的廄刺蠅棲群動態。在柳營,廄刺蠅棲群密度與平均風速、日照時間及相對濕度呈現正相關;在斗南場的棲群動態則是與平均風速及溫度呈現正相關。比較採集時間前30天的平均氣象數據的分析結果顯示,降雨天數與相對溼度分別對柳營場的廄刺蠅族群呈現負相關與正相關,但皆不顯著。斗南場的廄刺蠅族群則與平均溫度具正相關性,顯示兩個養牛場的廄刺蠅發生受氣候因子的影響存在差異性。利用無母數分析在養牛場不同位置的誘捕蟲數,結果顯示廄刺蠅在養牛場的活動受方位的影響。此外,於斗南養牛場的試驗中發現,面對牛舍方向的黏紙較背向牛舍的紙板誘集到更多蟲體。分析兩個養牛場的廄刺蠅種類,發現主要發生的種類為畜廄刺蠅(Stomoxys calcitrans) ,其次為南方刺蠅(Stomoxys sitiens)。其中春、夏、冬三個季節中,畜廄刺蠅發生比例明顯剛高於南方刺蠅,秋季則兩種刺蠅發生數量相當。進一步探討在台灣各地的畜廄刺蠅地理親緣關係,將自全台13個樣點共110隻畜廄刺蠅個體粒線體基因COI、16S rDNA及核基因ITS2核酸片段定序,分析其親緣地理關係。其序列與資料庫序列進行最大似然法(Maximum likelihood)及貝氏分析法(Bayesian inferences)演算的結果顯示在台的廄刺蠅族群可分為兩大支系,而利用16S rDNA及ITS2序列分析的結果則未呈現分群。分子變異分析(Analysis of molecular variance, AMOVA)的結果則顯示各樣點族群間的變異極小,更甚者,其分子遺傳指數(FST)及各地理區之間的序列無差異,皆顯示出各個樣點間基因交流頻繁。由COI及16S rDNA序列所建構而成的分子鐘演化樹顯示出,兩大支系約在35萬年前分化。支系A由大部分的台灣樣本及一部分的泰國序列所組成,顯示台灣族群與泰國族群關係密切。另一支系B則是由北美、歐洲及東亞的序列,加上部分台灣樣本所組成。分析結果顯示台灣的畜廄刺蠅族群可能有不同的來源。
其他識別: U0005-2608201516532900
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-27起公開。
Appears in Collections:昆蟲學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101036006-1.pdf4.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.